def __init__(self, config: ConfigClass, save_dir: str, log_name=''): self.log_name = f'{log_name}_{config.gpu_node}' self.save_dir = save_dir self.main_logger, self.main_log_handler = setup_logger(save_dir, self.log_name) self.main_logger.info(f'Saving to folder {save_dir}') self.main_writer = SummaryWriter(save_dir) self.config = config self.model_cfg = config.model self.train_cfg = config.training self.optim_cfg = config.training.optimizer self.loss_cfg = config.training.loss_fn self.resume_cfg = config.resume if self.train_cfg.seed is not None: torch.manual_seed(self.train_cfg.seed) random.seed(self.train_cfg.seed) np.random.seed(self.train_cfg.seed) self.main_logger.info(f'Seed set on {self.train_cfg.seed}') self.device = torch.device(f'cuda:{config.gpu_node}' if torch.cuda.is_available() else 'cpu') self.eval_train_loader = config.data.run_val_on_train if self.train_cfg.early_stop_fn == 'f1_score': self.eval_func = self.f1_score elif self.train_cfg.early_stop_fn == 'iou_score': self.eval_func = self.iou_score else: self.eval_func = self.val_loss self.use_ensemble = self.train_cfg.use_ensemble if self.train_cfg.use_ensemble: self.len_models = self.train_cfg.ensemble.number_models
def initialize_g_vars(): global logger, args logger = setup_logger() args = setup_args() # get siem config args.config = config_file_to_dict(filename=args.config) pprint(args.config) # get sigma folder path args.sigma = args.sigma if not ( args.sigma is None or args.sigma == '') else force_exit( 'Sigma folder path is required...', exit=1) logger.debug(args.sigma) # get sigma config file path args.sigma_config = args.sigma_config if not ( args.sigma_config is None or args.sigma_config == '') else force_exit( 'Sigma Config is required...', exit=1) logger.debug(args.sigma_config) logger.debug(args.sigma_venv) args.sigma = args.sigma.rstrip('\\') args.sigma = args.sigma.rstrip('/') args.rule = args.rule.rstrip('\\') args.rule = args.rule.rstrip('/') args.sigma_venv = args.sigma_venv.rstrip('\\') args.sigma_venv = args.sigma_venv.rstrip('/') logger.setLevel(args.verbosity) logger.info('initialize_g_vars() finished successfully...')
def initialize_g_vars(): global logger, args logger = setup_logger() args = setup_args() logger.setLevel(args.verbosity) logger.info('Description: {}'.format(args.description)) logger.info('initialize_g_vars() finished successfully...')
def _create_train_loggers(self, value): self.acquisition_step = value self.save_model_dir = os.path.join(self.save_dir, f'Step {value}') os.makedirs(self.save_model_dir) self.save_data_dir = os.path.join(self.main_data_dir, f'Step {value}') os.makedirs(self.save_data_dir) self.train_logger, self.train_log_handler = setup_logger( self.save_model_dir, f'Train step {value}') self.train_writer = SummaryWriter(self.save_model_dir)