예제 #1
0
def display_uploaded_img(contents, fname, date):
    if contents is not None:
        original_img, resized_img = parse_image(contents, fname, date)

        img = np.expand_dims(resized_img, axis=0)
        prediction_array = model.predict(img)
        prediction = np.argmax(prediction_array)

        children = [
            "Your uploaded image: ",
            html.Img(className="image", src=original_img),
            "Image fed the model: ",
            html.Img(className="image", src=create_img(resized_img)),
            f"The model thinks this is a {label_mapping[prediction]}",
            html.Button(id="clear-button",
                        children="Remove Uploaded Image",
                        n_clicks=0),
        ]
        return children
예제 #2
0
def display_selected_point(clickData):
    if not clickData:
        raise dash.exceptions.PreventUpdate

    idx = clickData["points"][0]["customdata"]
    img = np.expand_dims(all_images[idx], axis=0)
    prediction_array = model.predict(img)
    prediction = np.argmax(prediction_array)
    probability = np.round(prediction_array[0, prediction] * 100, 2)
    ground_truth = all_labels[idx]
    correct = prediction == ground_truth
    if correct:
        color = "green"
    else:
        color = "red"
    return [
        create_img(all_images[idx]),
        [
            f"prediction: {label_mapping[prediction]} ({probability}% certainty)",
            html.Br(),
            f"actual: {label_mapping[ground_truth]}",
        ],
    ]
예제 #3
0
def display_selected_point(hoverData):
    if not hoverData:
        return create_img(train_images[0])
    idx = hoverData["points"][0]["customdata"]
    return create_img(all_images[idx])
예제 #4
0
                                                    html.Div(
                                                        id="prediction",
                                                        children=[
                                                            "Click on a point to display the Network's prediction",
                                                            html.Br(),
                                                            html.Br(),
                                                        ],
                                                    ),
                                                ],
                                                style={"height": "20%"},
                                            ),
                                            html.Br(),
                                            html.Img(
                                                id="selected-data-graph",
                                                className="image",
                                                src=create_img(
                                                    np.zeros((28, 28))),
                                            ),
                                        ],
                                    )
                                ],
                            ),
                        ],
                    ),
                ],
            ),
        ],
    ),
])


@app.callback(