예제 #1
0
    def fitness(self, C):
        """Calculate the fitness of chromosome C.
    
    The fitness of a solution is its cost. First convert C to the full representation.
    Then calculate its cost. (The lower the better). 
    """

        solution = copy.deepcopy(self.scenario)
        helpers.from_chromosome(solution, C)
        if self.optimize_for == "availability":
            return helpers.get_solution_availability(solution)
        elif self.optimize_for == "latency":
            return helpers.get_solution_global_latency(solution,
                                                       self.processing_latency)
        else:  #cost
            return helpers.get_solution_cost(solution)
예제 #2
0
    def execute(self):
        """Run the genetic algorithm.
    
    Returns the scenario JSON object with placement decisions plus some 
    algorithm-specific information.
    """

        # Fill in missing edges
        helpers.add_missing_links(self.scenario)

        # check if we will store data per generation in a file
        log_generation_data = False
        if self.generations_file is not None:
            try:
                gen_fp = open(self.generations_file, "w+")
                log_generation_data = True
                gen_fp.write("# Scenario: " + str(self.scenario_file) + "\n")
                gen_fp.write("# Seed: " + str(self.seed) + "\n")
                gen_fp.write(
                    "#-----------------------------------------------\n")
                gen_fp.write("# Generation\tFitness\t\tTimestamp\n")
            except:
                logging.warn("Error opening/writing at " +
                             self.generations_file)
                pass

        prev_obj_value = 100000000  #inf
        if self.convergence_check:
            remaining_generations = self.stop_after

        start_time = datetime.now()

        self.init_solution_pool()
        for i in range(0, self.generations):
            obj_value = self.generation()
            # get a timestamp for this generation
            dt = datetime.now() - start_time
            # convert to seconds. dt.days should really not matter...
            time_taken = dt.days * 24 * 3600 + dt.seconds + dt.microseconds / 1000000.0

            logging.info("Generation/fitness (" + self.optimize_for +
                         ")/timestamp: " + str(i) + "\t" + str(obj_value) +
                         "\t" + str(time_taken))
            if log_generation_data:
                gen_fp.write(
                    str(i) + "\t\t" + str(obj_value) + "\t" + str(time_taken) +
                    "\n")

            # if we're checking for convergence to finish execution faster
            # we have to do some checks
            if self.convergence_check:
                if abs(obj_value - prev_obj_value) < self.delta:
                    # the solution fitness did not significantly changed
                    remaining_generations -= 1
                else:
                    remaining_generations = self.stop_after

                # the algorithm converged
                if remaining_generations < 0:
                    break
                prev_obj_value = obj_value
        final_solution = helpers.from_chromosome(self.scenario,
                                                 self.solution_pool[0])

        # add extra information about solution performance (cost, availability, latency, time taken, # generations)
        # and indications about constraint violations
        info = self.get_solution_info(final_solution)
        info["generations"] = i + 1
        info["execution_time"] = time_taken
        info["link_capacity_constraints_ok"] = True
        info["delay_constraints_ok"] = True
        info["host_capacity_constraints_ok"] = True
        info["mec_constraints_ok"] = True
        info["legal_placement"] = True

        # some final checks
        if not helpers.check_mec_constraints(final_solution):
            logging.warn("Final solution violates MEC constraints")
            info["mec_constraints_ok"] = False
        if not helpers.check_location_constraints(final_solution):
            logging.warn("Final solution violates location constraints")
            info["location_constraints_ok"] = False
        if not helpers.check_link_capacity_constraints(final_solution):
            logging.warn("Final solution violates link capacity constraints")
            info["link_capacity_constraints_ok"] = False
        if not helpers.check_delay_constraints(final_solution):
            logging.warn("Final solution violates delay constraints")
            info["delay_constraints_ok"] = False
        for h in final_solution["hosts"]:
            if not helpers.check_host_capacity_constraint(final_solution, h):
                logging.warn("Final solution violates host " + h["host_name"] +
                             " capacity constraints")
                info["host_capacity_constraints_ok"] = False
        for v in final_solution["vnfs"]:
            if not helpers.check_if_placement_allowed(
                    final_solution, v["place_at"][0], v["vnf_name"]):
                logging.warn("Final solution includes illegal placement of " +
                             v["place_at"][0] + " at " + v["vnf_name"])
                info["legal_placement"] = False
        final_solution["solution_performance"] = info

        used_hosts = helpers.get_used_hosts(final_solution)
        logging.info("Used hosts:")
        for uh in used_hosts:
            logging.info(uh)
        used_hedges = helpers.get_used_host_links(final_solution)
        logging.info("Used host edges:")
        for ue in used_hedges:
            logging.info(ue["source"] + " -> " + ue["target"] + " (" +
                         str(ue["delay"]) + ")")

        # Add host edge mapping info to VNF edges
        helpers.add_vnf_edge_mapping(final_solution)
        return final_solution
예제 #3
0
    def mutation(self):
        """Mutation operator.
    
    For each chromosome in the solution pool, decide according to the mutation
    rate if we'll modify it or not. If its selected for mutation, we create a 
    mutant as follows: We select two random hosts and swap two random VNFs. If 
    none of the selected hosts has VNFs on it, we select two other hosts and so on.
    If the constraints are violated, the mutant is rejected.
    """

        counter = 0
        for s in self.solution_pool:
            if uniform(0, 1) <= self.mutation_rate:
                logging.debug("Mutating solution: " + str(s))
                # create a copy of the chromosome
                scopy = copy.deepcopy(s)

                # Corner-case: There's just one gene in the chromosomes, so nothing to
                # mutate
                if len(scopy.genes) < 2:
                    continue

                # pick two hosts
                while True:
                    h1 = choice(scopy.genes)
                    h2 = choice(scopy.genes)
                    if h1 == h2:
                        continue
                    if h1.vnfs or h2.vnfs:
                        break

                # pick one VNF from each host
                v1 = None
                v2 = None
                if h1.vnfs:
                    v1 = choice(h1.vnfs)
                    h1.vnfs = [
                        x for x in h1.vnfs if x["vnf_name"] != v1["vnf_name"]
                    ]
                if h2.vnfs:
                    v2 = choice(h2.vnfs)
                    h2.vnfs = [
                        x for x in h2.vnfs if x["vnf_name"] != v2["vnf_name"]
                    ]

                # swap the two VNFs
                if v2:
                    h1.vnfs.append(v2)
                if v1:
                    h2.vnfs.append(v1)

                # create a solution represented in the full format
                S = helpers.from_chromosome(self.scenario, scopy)
                reject = False

                # check constraints
                for v in S["vnfs"]:
                    hname = v["place_at"][0]
                    vname = v["vnf_name"]
                    if not helpers.check_if_placement_allowed(S, hname, vname):
                        # There's a VNF "illegally" placed
                        reject = True
                        break

                if not reject:
                    if helpers.check_mec_constraints(S) is False:
                        reject = True
                if not reject:
                    if helpers.check_location_constraints(S) is False:
                        reject = True
                if not reject:
                    for h in S["hosts"]:
                        if helpers.check_host_capacity_constraint(S,
                                                                  h) is False:
                            reject = True
                            break
                if not reject:
                    if helpers.check_link_capacity_constraints(S) is False:
                        reject = True
                if not reject:
                    if helpers.check_delay_constraints(S) is False:
                        reject = True

                mutant = helpers.to_chromosome(S)

                if not reject:
                    # all constraints ok
                    # delete old solution and replace with mutant
                    self.solution_pool[counter] = mutant
                    logging.debug("Mutant ACCEPTED")
                else:
                    logging.debug("Mutant REJECTED")
                    pass
                counter += 1
예제 #4
0
    def crossover(self):
        """Crossover operation.
    
    - Select two random chromosomes
    - Rank their genes according to an efficiency function
    - Create a new chromosome by taking the "best" genes until all VNFs are placed
    (if when adding a gene one of its VNFs is already placed, just ignore it)
    """

        # Pick two random chromosomes (C1 and C2 could coincide)
        C1 = choice(self.solution_pool)
        C2 = choice(self.solution_pool)

        # Create a list of all their genes (i.e., hosts with the VNFs assigned to them)
        genes = copy.deepcopy(C1.genes + C2.genes)

        # sort genes by efficiency (lowest cost first)
        for g in genes:
            g.efficiency = self.gene_efficiency(g)

        # For availability, sort in descending order (as we want the max here)
        rev = False
        if self.optimize_for == "availability":
            rev = True
        genes = sorted(genes, key=attrgetter('efficiency'), reverse=rev)

        # vnfs to place (list of strings)
        vnfs = [v["vnf_name"] for v in self.scenario["vnfs"]]

        # create new chromosome
        new_genes = []
        # continue as long as there are still vnfs to place
        while vnfs and genes:
            # if the gene host has already been put in the chromosome,
            # skip the gene. This ensures that at this step no capacity
            # constraints will be violated.
            if genes[0].hostname in [g.hostname for g in new_genes]:
                del (genes[0])
            else:
                # if a VNF of the gene is not in the remaining vnf list, remove it from the gene
                # since this means it's already placed
                for v in genes[0].vnfs:
                    if v["vnf_name"] not in vnfs:
                        genes[0].vnfs.remove(v)

                # finally, add the new gene
                # also, remove its vnfs from the list of pending ones (there should be a more efficient way to do this)
                new_genes.append(
                    Gene(genes[0].hostname,
                         genes[0].vnfs,
                         host_failure_rate=genes[0].host_failure_rate))
                for v in genes[0].vnfs:
                    if v["vnf_name"] in vnfs:
                        vnfs.remove(v["vnf_name"])
                del (genes[0])

        C = Chromosome(new_genes)

        # Now we need to check if there are any VNFs left unassigned
        # If so, we place them anywhere they fit and are allowed to
        solution = copy.deepcopy(self.scenario)
        helpers.from_chromosome(solution, C)
        while vnfs:
            vname = vnfs.pop()
            v = filter(lambda x: x.get("vnf_name") == vname,
                       solution["vnfs"])[0]
            host = helpers.check_if_there_is_space(solution, v)
            if host:  # host found, place VNF
                v["place_at"].append(host["host_name"])
            else:
                # Normally we should not arrive here, but, if so,
                # this means that there's nowhere to place the VNF
                # in this case, we return None and the caller will see what to do
                return None

        # perform constraint checks
        mec_constraints_ok = helpers.check_mec_constraints(solution)
        location_constraints_ok = helpers.check_location_constraints(solution)
        link_constraints_ok = helpers.check_link_capacity_constraints(solution)
        delay_constraints_ok = helpers.check_delay_constraints(solution)

        if link_constraints_ok and delay_constraints_ok and mec_constraints_ok and location_constraints_ok:
            # return the chromosome
            return helpers.to_chromosome(solution)
        else:
            return None