def draw_row(canvas:Canvas, row:tuple, top_left:tuple, pixel:int=25): x = top_left[0] y = top_left[1] # you could also make a palette and each cell number # could access a color in the palette: palette = [None, '#E0607E', 'black', 'white'] for cell in row: if cell != 0: fill = palette[cell] make_square(canvas, (x, y), pixel, fill_color=fill) x += pixel
def run_inference(inf_file): # Preprocessing of the image happens here img = load_image(inf_file) print("Image Loaded") img = make_square(img) img = augment(prep, img) print("Transformations done") img = img.transpose(-1, 0, 1).astype(np.float32) img = img.reshape(-1, CHANNELS, IMG_WIDTH, IMG_HEIGHT) # Inferencing starts here sess = onnxruntime.InferenceSession("./best_acc.onnx") print("The model expects input shape: ", sess.get_inputs()[0].shape) print("The shape of the Image is: ", img.shape) input_name = sess.get_inputs()[0].name result = sess.run(None, {input_name: img}) prob_array = result[0][0] print("Prob Array ", prob_array) prob = max(softmax(result[0][0])) print("Prob ", prob) species = tf.argmax(prob_array.ravel()[:10]).numpy() print("Class Label ", species) print("Spec ", CLASS_MAP[species][1]) string_label = CLASS_MAP[species][1].split(" ") return (string_label[0], string_label[1], str(prob), color_code(prob))
def draw_row(canvas:Canvas, row:tuple, top_left:tuple, pixel:int=25): x = top_left[0] y = top_left[1] for cell in row: if cell == 1: make_square(canvas, (x, y), pixel, fill_color='#E0607E') elif cell == 2: make_square(canvas, (x, y), pixel, fill_color='black') elif cell == 3: make_square(canvas, (x, y), pixel, fill_color='white') x += pixel
def run_inference(inf_file): # Preprocessing of the image happens here img = load_image(inf_file) originalimg = img #Cropping line is below, SHOULD NOT BE INCLUDED IN THIS VERSION #useless, img, status=cropImage(impath, 'm', labelsfile, 21, 0.08) print("Image Loaded") img = make_square(img) img = augment(prep, img) print("Transformations done") img = img.transpose(-1, 0, 1).astype(np.float32) img = img.reshape(-1, CHANNELS, IMG_WIDTH, IMG_HEIGHT) # Inferencing starts here sess = onnxruntime.InferenceSession("./best_acc.onnx") print("The model expects input shape: ", sess.get_inputs()[0].shape) print("The shape of the Image is: ", img.shape) input_name = sess.get_inputs()[0].name result = sess.run(None, {input_name: img}) prob_array = result[0][0] print("Prob Array ", prob_array) prob = max(softmax(result[0][0])) print("Prob ", prob) species = tf.argmax(prob_array.ravel()[:20]).numpy() print("Class Label ", species) print("Spec ", CLASS_MAP[species][1]) string_label = CLASS_MAP[species][1].split(" ") #fullfilename = mosquitoid + "_" + picnum + "_" + string_label[0] + "_" + string_label[1] #fullbucket = 'photostakenduringpilotstudy' #s3_file = 'PilotStudy' #file = cv2.imwrite(fullfilename, originalimg) #upload_to_aws(file, fullbucket , s3_file) ##upload_file(file, fullbucket) return (string_label[0], string_label[1], str(prob), color_code(prob))
# value of your y coordinate as shown below. # # Now, how could you convert the program below to a function so that you # could create multiple frankensteins drawn at different sizes, colors, and # position? # frankenstein anchored at position (x, y) pixel = 20 top_left = (100, 50) body_color = '#5ec031' pants_color = 'hotpink' x = top_left[0] y = top_left[1] # row 1 make_square(canvas, (x + 2 * pixel, y), pixel, fill_color='black') make_square(canvas, (x + 3 * pixel, y), pixel, fill_color='black') make_square(canvas, (x + 4 * pixel, y), pixel, fill_color='black') make_square(canvas, (x + 5 * pixel, y), pixel, fill_color='black') make_square(canvas, (x + 6 * pixel, y), pixel, fill_color='black') # row 2 make_square(canvas, (x + 2 * pixel, y + pixel), pixel, fill_color=body_color) make_square(canvas, (x + 3 * pixel, y + pixel), pixel, fill_color=body_color) make_square(canvas, (x + 4 * pixel, y + pixel), pixel, fill_color=body_color) make_square(canvas, (x + 5 * pixel, y + pixel), pixel, fill_color=body_color) make_square(canvas, (x + 6 * pixel, y + pixel), pixel, fill_color=body_color) # row 3 make_square(canvas, (x + 2 * pixel, y + 2 * pixel), pixel,
from itertools import product import matplotlib.pyplot as plt from neupy import algorithms, utils, init from helpers import plot_2d_grid, make_circle, make_elipse, make_square plt.style.use('ggplot') utils.reproducible() if __name__ == '__main__': GRID_WIDTH = 4 GRID_HEIGHT = 4 datasets = [ make_square(), make_circle(), make_elipse(corr=0.7), ] configurations = [{ 'weight_init': init.Uniform(0, 1), 'title': 'Random uniform initialization', }, { 'weight_init': 'sample_from_data', 'title': 'Sampled from the data', }, { 'weight_init': 'init_pca', 'title': 'Initialize with PCA', }] plt.figure(figsize=(15, 15))
# Note that each of the x-positions can be re-written in terms of # the pixel value. The advantage of rewriting your code in this # way is that it allows you to be able to scale your frankenstein. # In other words, if you update the size of the pixel (using the # pixel variable below), the monster scales. # However, no matter what, frankenstein is still anchored at # position (0, 0). How could you alter this program so that frank # could be drawn *anywhere on the screen? pixel = 25 body_color = '#5ec031' pants_color = 'hotpink' # row 1 # before: make_square(canvas, (2 * pixel, 0), pixel, fill_color='black') # (50, 0), 25 make_square(canvas, (3 * pixel, 0), pixel, fill_color='black') # (75, 0), 25 make_square(canvas, (4 * pixel, 0), pixel, fill_color='black') # (100, 0), 25 make_square(canvas, (5 * pixel, 0), pixel, fill_color='black') # (125, 0), 25 make_square(canvas, (6 * pixel, 0), pixel, fill_color='black') # (150, 0), 25 # row 2 make_square(canvas, (2 * pixel, pixel), pixel, fill_color=body_color) # (50, 25), 25 make_square(canvas, (3 * pixel, pixel), pixel, fill_color=body_color) # (75, 25), 25 make_square(canvas, (4 * pixel, pixel), pixel, fill_color=body_color) # (100, 25), 25 make_square(canvas, (5 * pixel, pixel), pixel, fill_color=body_color) # (125, 25), 25 make_square(canvas, (6 * pixel, pixel), pixel,
def draw_row(canvas: Canvas, row: tuple, top_left: tuple, pixel: int = 25): x = top_left[0] y = top_left[1] for cell in row: make_square(canvas, (x, y), pixel, fill_color='grey') x += pixel
from helpers import make_square, make_grid # initialize window gui = Tk() canvas = Canvas(gui, width=600, height=600, background='white') canvas.pack() ########################## YOUR CODE BELOW THIS LINE ############################## # helper function that draws a grid. make_grid(canvas, 600, 600) body_color = '#5ec031' # row 1 make_square(canvas, (50, 0), 25, fill_color='black') # pixel (3, 1) make_square(canvas, (75, 0), 25, fill_color='black') # pixel (4, 1) make_square(canvas, (100, 0), 25, fill_color='black') # pixel (5, 1) make_square(canvas, (125, 0), 25, fill_color='black') # pixel (6, 1) make_square(canvas, (150, 0), 25, fill_color='black') # pixel (7, 1) # row 2 make_square(canvas, (50, 25), 25, fill_color=body_color) # pixel (3, 2) make_square(canvas, (75, 25), 25, fill_color=body_color) # pixel (4, 2) make_square(canvas, (100, 25), 25, fill_color=body_color) # pixel (5, 2) make_square(canvas, (125, 25), 25, fill_color=body_color) # pixel (6, 2) make_square(canvas, (150, 25), 25, fill_color=body_color) # pixel (7, 2) # row 3 make_square(canvas, (50, 50), 25, fill_color=body_color) # pixel (3, 3) make_square(canvas, (75, 50), 25, fill_color=body_color) # pixel (4, 3)