def main(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.benchmark = args.cudnn_benchmark print("CUDNN BENCHMARK ", args.cudnn_benchmark) if not args.cpu_run: assert(torch.cuda.is_available()) if args.local_rank is not None: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') multi_gpu = args.local_rank is not None if multi_gpu: print("DISTRIBUTED with ", torch.distributed.get_world_size()) if args.fp16: optim_level = 3 else: optim_level = 0 jasper_model_definition = toml.load(args.model_toml) dataset_vocab = jasper_model_definition['labels']['labels'] ctc_vocab = add_ctc_labels(dataset_vocab) val_manifest = args.val_manifest featurizer_config = jasper_model_definition['input_eval'] featurizer_config["optimization_level"] = optim_level featurizer_config["fp16"] = args.fp16 args.use_conv_mask = jasper_model_definition['encoder'].get('convmask', True) if args.masked_fill is not None: print("{} masked_fill".format("Enabling" if args.masked_fill else "Disabling")) jasper_model_definition["encoder"]["conv_mask"] = args.masked_fill if args.max_duration is not None: featurizer_config['max_duration'] = args.max_duration if args.pad_to is not None: featurizer_config['pad_to'] = args.pad_to if featurizer_config['pad_to'] == "max": featurizer_config['pad_to'] = -1 print('=== model_config ===') print_dict(jasper_model_definition) print() print('=== feature_config ===') print_dict(featurizer_config) print() data_layer = None if args.wav is None: data_layer = AudioToTextDataLayer( dataset_dir=args.dataset_dir, featurizer_config=featurizer_config, manifest_filepath=val_manifest, labels=dataset_vocab, batch_size=args.batch_size, pad_to_max=featurizer_config['pad_to'] == -1, shuffle=False, multi_gpu=multi_gpu) audio_preprocessor = AudioPreprocessing(**featurizer_config) encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab)) if args.ckpt is not None: print("loading model from ", args.ckpt) if os.path.isdir(args.ckpt): exit(0) else: checkpoint = torch.load(args.ckpt, map_location="cpu") for k in audio_preprocessor.state_dict().keys(): checkpoint['state_dict'][k] = checkpoint['state_dict'].pop("audio_preprocessor." + k) audio_preprocessor.load_state_dict(checkpoint['state_dict'], strict=False) encoderdecoder.load_state_dict(checkpoint['state_dict'], strict=False) greedy_decoder = GreedyCTCDecoder() # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights())) if args.wav is None: N = len(data_layer) step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()))) if args.steps is not None: print('-----------------') print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()))) print('Have {0} steps / (gpu * epoch).'.format(args.steps)) print('-----------------') else: print('-----------------') print('Have {0} examples to eval on.'.format(N)) print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch)) print('-----------------') print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize) if not args.cpu_run: audio_preprocessor.cuda() encoderdecoder.cuda() if args.fp16: encoderdecoder = amp.initialize( models=encoderdecoder, opt_level=AmpOptimizations[optim_level]) encoderdecoder = model_multi_gpu(encoderdecoder, multi_gpu) audio_preprocessor.eval() encoderdecoder.eval() greedy_decoder.eval() eval( data_layer=data_layer, audio_processor=audio_preprocessor, encoderdecoder=encoderdecoder, greedy_decoder=greedy_decoder, labels=ctc_vocab, args=args, multi_gpu=multi_gpu)
def main(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) assert(torch.cuda.is_available()) torch.backends.cudnn.benchmark = args.cudnn # set up distributed training if args.local_rank is not None: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') multi_gpu = torch.distributed.is_initialized() if multi_gpu: print_once("DISTRIBUTED TRAINING with {} gpus".format(torch.distributed.get_world_size())) # define amp optimiation level if args.fp16: optim_level = Optimization.mxprO1 else: optim_level = Optimization.mxprO0 jasper_model_definition = toml.load(args.model_toml) dataset_vocab = jasper_model_definition['labels']['labels'] ctc_vocab = add_ctc_labels(dataset_vocab) train_manifest = args.train_manifest val_manifest = args.val_manifest featurizer_config = jasper_model_definition['input'] featurizer_config_eval = jasper_model_definition['input_eval'] featurizer_config["optimization_level"] = optim_level featurizer_config_eval["optimization_level"] = optim_level sampler_type = featurizer_config.get("sampler", 'default') perturb_config = jasper_model_definition.get('perturb', None) if args.pad_to_max: assert(args.max_duration > 0) featurizer_config['max_duration'] = args.max_duration featurizer_config_eval['max_duration'] = args.max_duration featurizer_config['pad_to'] = "max" featurizer_config_eval['pad_to'] = "max" print_once('model_config') print_dict(jasper_model_definition) if args.gradient_accumulation_steps < 1: raise ValueError('Invalid gradient accumulation steps parameter {}'.format(args.gradient_accumulation_steps)) if args.batch_size % args.gradient_accumulation_steps != 0: raise ValueError('gradient accumulation step {} is not divisible by batch size {}'.format(args.gradient_accumulation_steps, args.batch_size)) data_layer = AudioToTextDataLayer( dataset_dir=args.dataset_dir, featurizer_config=featurizer_config, perturb_config=perturb_config, manifest_filepath=train_manifest, labels=dataset_vocab, batch_size=args.batch_size // args.gradient_accumulation_steps, multi_gpu=multi_gpu, pad_to_max=args.pad_to_max, sampler=sampler_type) data_layer_eval = AudioToTextDataLayer( dataset_dir=args.dataset_dir, featurizer_config=featurizer_config_eval, manifest_filepath=val_manifest, labels=dataset_vocab, batch_size=args.batch_size, multi_gpu=multi_gpu, pad_to_max=args.pad_to_max ) model = Jasper(feature_config=featurizer_config, jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab)) if args.ckpt is not None: print_once("loading model from {}".format(args.ckpt)) checkpoint = torch.load(args.ckpt, map_location="cpu") model.load_state_dict(checkpoint['state_dict'], strict=True) args.start_epoch = checkpoint['epoch'] else: args.start_epoch = 0 ctc_loss = CTCLossNM( num_classes=len(ctc_vocab)) greedy_decoder = GreedyCTCDecoder() print_once("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights())) print_once("Number of parameters in decode: {0}".format(model.jasper_decoder.num_weights())) N = len(data_layer) if sampler_type == 'default': args.step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()))) elif sampler_type == 'bucket': args.step_per_epoch = int(len(data_layer.sampler) / args.batch_size ) print_once('-----------------') print_once('Have {0} examples to train on.'.format(N)) print_once('Have {0} steps / (gpu * epoch).'.format(args.step_per_epoch)) print_once('-----------------') fn_lr_policy = lambda s: lr_policy(args.lr, s, args.num_epochs * args.step_per_epoch) model.cuda() if args.optimizer_kind == "novograd": optimizer = Novograd(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) elif args.optimizer_kind == "adam": optimizer = AdamW(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) else: raise ValueError("invalid optimizer choice: {}".format(args.optimizer_kind)) if optim_level in AmpOptimizations: model, optimizer = amp.initialize( #lnw block for error #min_loss_scale=1.0, models=model, optimizers=optimizer, opt_level=AmpOptimizations[optim_level]) if args.ckpt is not None: optimizer.load_state_dict(checkpoint['optimizer']) model = model_multi_gpu(model, multi_gpu) train( data_layer=data_layer, data_layer_eval=data_layer_eval, model=model, ctc_loss=ctc_loss, greedy_decoder=greedy_decoder, optimizer=optimizer, labels=ctc_vocab, optim_level=optim_level, multi_gpu=multi_gpu, fn_lr_policy=fn_lr_policy if args.lr_decay else None, args=args)
def main(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.benchmark = args.cudnn_benchmark print("CUDNN BENCHMARK ", args.cudnn_benchmark) assert(torch.cuda.is_available()) if args.local_rank is not None: torch.cuda.set_device(args.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') multi_gpu = args.local_rank is not None if multi_gpu: print("DISTRIBUTED with ", torch.distributed.get_world_size()) if args.fp16: optim_level = Optimization.mxprO3 else: optim_level = Optimization.mxprO0 model_definition = toml.load(args.model_toml) dataset_vocab = model_definition['labels']['labels'] ctc_vocab = add_blank_label(dataset_vocab) val_manifest = args.val_manifest featurizer_config = model_definition['input_eval'] featurizer_config["optimization_level"] = optim_level if args.max_duration is not None: featurizer_config['max_duration'] = args.max_duration if args.pad_to is not None: featurizer_config['pad_to'] = args.pad_to if args.pad_to >= 0 else "max" print('model_config') print_dict(model_definition) print('feature_config') print_dict(featurizer_config) data_layer = None if args.wav is None: data_layer = AudioToTextDataLayer( dataset_dir=args.dataset_dir, featurizer_config=featurizer_config, manifest_filepath=val_manifest, labels=dataset_vocab, batch_size=args.batch_size, pad_to_max=featurizer_config['pad_to'] == "max", shuffle=False, multi_gpu=multi_gpu) audio_preprocessor = AudioPreprocessing(**featurizer_config) #encoderdecoder = JasperEncoderDecoder(jasper_model_definition=jasper_model_definition, feat_in=1024, num_classes=len(ctc_vocab)) model = RNNT( feature_config=featurizer_config, rnnt=model_definition['rnnt'], num_classes=len(ctc_vocab) ) if args.ckpt is not None: print("loading model from ", args.ckpt) checkpoint = torch.load(args.ckpt, map_location="cpu") model.load_state_dict(checkpoint['state_dict'], strict=False) #greedy_decoder = GreedyCTCDecoder() # print("Number of parameters in encoder: {0}".format(model.jasper_encoder.num_weights())) if args.wav is None: N = len(data_layer) step_per_epoch = math.ceil(N / (args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()))) if args.steps is not None: print('-----------------') print('Have {0} examples to eval on.'.format(args.steps * args.batch_size * (1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()))) print('Have {0} steps / (gpu * epoch).'.format(args.steps)) print('-----------------') else: print('-----------------') print('Have {0} examples to eval on.'.format(N)) print('Have {0} steps / (gpu * epoch).'.format(step_per_epoch)) print('-----------------') else: audio_preprocessor.featurizer.normalize = "per_feature" print ("audio_preprocessor.normalize: ", audio_preprocessor.featurizer.normalize) audio_preprocessor.cuda() audio_preprocessor.eval() eval_transforms = torchvision.transforms.Compose([ lambda xs: [x.cuda() for x in xs], lambda xs: [*audio_preprocessor(xs[0:2]), *xs[2:]], lambda xs: [xs[0].permute(2, 0, 1), *xs[1:]], ]) model.cuda() if args.fp16: model = amp.initialize( models=model, opt_level=AmpOptimizations[optim_level]) model = model_multi_gpu(model, multi_gpu) greedy_decoder = RNNTGreedyDecoder(len(ctc_vocab) - 1, model.module if multi_gpu else model) eval( data_layer=data_layer, audio_processor=eval_transforms, encoderdecoder=model, greedy_decoder=greedy_decoder, labels=ctc_vocab, args=args, multi_gpu=multi_gpu)