def tauLeap(model, tmax, tau=1, track=False, silent=False, propagate=False, **kwargs) :

	# Initialisation ##########################################################

	# If user requested to propagate old results, don't build the model
	if not propagate :
		model.build(silent=True) # initialise model

	# Time array
	t = [0]

	# Initialise the trace
	trace = model.X[:]

	# Timestep and tracking indices
	idx = 0
	tracking_idx = -1;

	# Start the progress bar
	if not silent :
		helpers.progBarStart()

	# Preallocate array of tracked reactions
	if track :
		tracked_trans_array = np.zeros((model.N_events,1)) #int(tmax/tau)))
		counter = 0

	# Which transitions need to be capped ?
	cappedEvents = -(model.transition * (model.transition < 0))




	# Simulation loop #########################################################
	while t[-1] < tmax :

		# Compute a rates vector
		rates = [rate(model.X, t[-1]) for rate in model.rates]

		# Ensure all rates are valid
		if np.any(np.array(rates) < 0) :
			raise helpers.SimulationError("Negative rates found.")

		# Ensure there are possible events to continue with
		if not np.any(np.array(rates) > 0) :
			if not silent :
				print "No more possible events, stopping early !"
			return (t, trace) if not track else (t, trace, tracked_trans_array)
예제 #2
0
def gillespie(model, tmax, track=False, silent=False, propagate=False, **kwargs) :

	# Initialise ##############################################################

	# Generate this many random uniforms at once, for speed
	randsize = 1000

	# Timestep at which random numbers were last updated
	tlast = 0

	# Time array
	t = [0]

	# If user requested to propagate old results, don't build the model
	if not propagate :
		model.build(silent=True) # initialise model

	# Initialise the trace
	trace = []
	trace.append(model.X[:].astype(int))

	# Preallocate array of tracked reactions
	if track :
		tracked_trans_array = []

	# Pregenerate some random numbers
	rand = np.random.uniform(size=1000)
	rcount = 0

	# Start the progress bar
	if not silent :
		helpers.progBarStart()




	# Simulation loop #########################################################
	while t[-1] < tmax :

		# Compute a rates vector
		rates = [rate(model.X, t[-1]) for rate in model.rates]

		# Ensure all rates are statistically valid
		if np.any(np.array(rates) < 0) :
			raise helpers.SimulationError("Negative rates found.")

		# Ensure there are possible events to continue with
		if not np.any(np.array(rates) > 0) :
			if not silent :
				print("No more possible events, stopping early !")
			out = [t, np.array(trace)]
			if track :
				out.append(np.array(tracked_trans_array))
			return out

		# Draw a waiting time
		t.append(t[-1] + np.random.exponential(1./np.sum(rates)))

		# Select which transition occurs
		trans = np.where(np.random.uniform() < \
			np.cumsum(rates / np.sum(rates)))[0][0]

		# Update the state space
		model.X += model.transition[:, trans].astype(int)



		# If we're tracking, keep track of the transition
		if track :
			currentevent = np.zeros(model.N_events)
			currentevent[trans] = 1
			tracked_trans_array.append(currentevent)
			"""
			tracked_trans_array[trans, tcount] = 1
			tcount += 1
			if tcount >= tracked_trans_array.shape[1] :
				tracked_trans_array = np.hstack((tracked_trans_array, \
										np.zeros((model.N_events,randsize))))
			"""


		# At the end of randsize iterations, update randsize "adaptively"
		rcount += 1
		if rcount == randsize :
			rcount = 0
			randsize = max(1000, randsize * tmax / (tlast - t[-1]) - 1)
			rand = np.random.uniform(size=randsize)
			tlast = t[-1]



		# Append new state space to trace
		trace.append(list(model.X))


		# Update progress bar
		if not silent :
			helpers.progBarUpdate(t[-2:], tmax)


	# Termination #############################################################

	# Reset state space
	if not propagate :
		model.X = np.array([model.initconds[x] for x in model.states],
					dtype=int)

	# Return
	out = [t, np.array(trace)]
	if track :
		out.append(np.array(tracked_trans_array))

	return out
예제 #3
0
def tauLeap(model, tmax, tau=1, track=False, silent=False, propagate=False, noNegStatesAllowed = True, **kwargs) :

	# Initialisation ##########################################################

	# If user requested to propagate old results, don't build the model
	if not propagate :
		model.build(silent=True) # initialise model

	# Time array
	t = [0]

	# Initialise the trace
	trace = []
	trace.append(model.X[:].astype(int))

	# Timestep and tracking indices
	idx = 0

	# Start the progress bar
	if not silent :
		helpers.progBarStart()

	# Array of tracked reactions
	if track :
		tracked_trans_array = []#np.zeros((model.N_events,1)) #int(tmax/tau)))

	

	# Simulation loop #########################################################
	while t[-1] < tmax :

		# Compute a rates vector
		rates = [rate(model.X, t[-1]) for rate in model.rates]

		# Ensure all rates are valid
		if np.any(np.array(rates) < 0) :
			print(t[-1])
			print(rates)
			print(model.X)
			raise helpers.SimulationError("Negative rates found.")

		 # Ensure there are possible events to continue with
		if not np.any(np.array(rates) > 0) :
			if not silent :
				print("No more possible events, stopping early !")
			# Return
			out = [t, np.array(trace)]
			if track :
				out.append(np.array(tracked_trans_array))
			return out

		#Estimate the total number of events per transition
		estEvents = np.array([np.random.poisson(rate * tau) \
           for rate in rates], dtype=int)

		# Calculate transitions by statespace
		#tempTransitions_array = model.transition * estEvents

		# Create array of state space values to test against transitions
		#tempStateSpace = np.tile(model.X.reshape([model.N_states,1]), model.N_events)

		# Calculate net transitions by statespace
		tempTransitions = np.sum(model.transition * estEvents, axis=1).astype(int) 

		# Calculate negative transitions by statespace
		negTransitions = deepcopy(model.transition)
		negTransitions[model.transition>=0] =0 
		tempNegTransitions = np.sum(negTransitions * estEvents, axis=1).astype(int)

		# If tracking is on, check if there are any total negative transitions that go below the number
		# individuals in the statespace 
		if track :
			if noNegStatesAllowed & np.any(model.X + tempNegTransitions <0) :
				# create blank new transitions vector
				tempNewNegTransitions = np.zeros(model.N_states)
				#create new Events vector
				newEvents = np.zeros(model.N_events)
				# initiate tempEvents vector as estEvents
				tempEvents = deepcopy(estEvents)
				while np.all(model.X + tempNewNegTransitions >0) :
					#randomly pick an event from est Events
					newEventIdx = np.random.choice(model.N_events,None,True, tempEvents.astype(float)/np.sum(tempEvents))
					newEvents[newEventIdx] +=1
					tempEvents[newEventIdx]-=1
					#create vector of new negative transitions
					tempNewNegTransitions = np.sum(negTransitions * newEvents, axis=1).astype(int)
				diff = estEvents-newEvents
				reductionRatio = min(1-diff[diff>0]/estEvents[diff>0])
				#reductionRatio = max(newEvents/estEvents)
				model.X += np.sum(model.transition*newEvents, axis=1).astype(int)
				t.append(t[idx]+reductionRatio*tau)
				tracked_trans_array.append(newEvents)
			else :
				model.X += np.sum(model.transition*estEvents, axis=1).astype(int)
				t.append(t[idx]+tau)
				tracked_trans_array.append(estEvents)
		else :
			#Check if negative states exist and if they are allowed
			if noNegStatesAllowed & np.any(model.X + tempTransitions < 0) :
				#if negative states exist but are not allowed, find where they are                  
				tempNewModelStates =model.X + tempTransitions
				negidx= np.where(tempNewModelStates<0)
				#calculate ratio by which to reduce all transitions (max ratio of differences in events)
				reductionRatio = min(1-tempNewModelStates[negidx]/tempTransitions[negidx])
				#Adjust number of events done down by ratio
				estEvents_new = reductionRatio*estEvents
				# Update the state space
				model.X += np.sum(model.transition * estEvents_new, axis=1).astype(int)
				#update t by adjusted tau
				t.append(t[idx] + tau * reductionRatio)
			else :
			# Otherwise, add a full tau increment to the time array
				t.append(t[idx] + tau)
				# Update the state space
				model.X += np.sum(model.transition * estEvents, axis=1).astype(int)



					
		#check for negative
		# randomly until go negative -- keep track of new events vs est events -- that is ratio

		
		# #check if there are negative transitions
		# # check it total number of negative transitions goes below 0 
		# if noNegStatesAllowed & np.any((tempStateSpace + tempTransitions_array )<0) :
		# 	#if negative states exist but are not allowed, find where they are                  
		# 	tempNewStateSpaceChanges = (tempStateSpace+tempTransitions_array)
		# 	negidx = np.where(tempNewStateSpaceChanges <0) 
		# 	#calculate ratio by which to reduce all transitions (max ratio of differences in events)
		# 	reductionRatio = min(1-tempNewStateSpaceChanges[negidx]/tempTransitions_array[negidx])
		# 	#Adjust number of events done down by ratio
		# 	estEvents_new = reductionRatio*estEvents
		# 	# Update the state space
		# 	model.X += np.sum(model.transition * estEvents_new, axis=1).astype(int)

		# 	if track :
		# 		tracked_trans_array.append(estEvents_new)
		# 		print("time idx is")
		# 		print(idx)
		# 		print("time is")
		# 		print(t[idx])
		# 		print("estEvents_new are")
		# 		print(estEvents_new)
		# 		print("time idx is")
		# 		print(idx)
		# 		print("time is")
		# 		print(t[idx])
		# 	#update t by adjusted tau
		# 	t.append(t[idx] + tau * reductionRatio)
		# else :
		# # Otherwise, add a full tau increment to the time array
		# 	t.append(t[idx] + tau)
		# 	if track :
		# 		tracked_trans_array.append(estEvents)
		# 		print("time idx is")
		# 		print(idx)
		# 		print("time is")
		# 		print(t[idx])
		# 		print("estEvents are")
		# 		print(estEvents)

		# 	# Update the state space
		# 	model.X += np.sum(model.transition * estEvents, axis=1).astype(int)
		
			
		
		# Append new state space to trace, increment timestep index
		idx += 1
		trace.append(list(model.X))

		# Update progress bar
		if not silent :
			helpers.progBarUpdate(t[idx:(idx+1)],len(t))

		# Record tracked reactions
		#if track :
		#	tracked_trans_array.append(estEvents)
		


	# Termination #############################################################

	# Reset state space unless the user wants to carry it forward
	if not propagate :
		model.X = np.array([model.initconds[x] for x in model.states], dtype=int)


	# Return
	out = [t, np.array(trace)]
	if track :
		out.append(np.array(tracked_trans_array))

	return out
예제 #4
0
def tauLeap(model, tmax, tau=1, track=False, silent=False, propagate=False, **kwargs) :

	# Initialisation ##########################################################

	# If user requested to propagate old results, don't build the model
	if not propagate :
		model.build(silent=True) # initialise model

	# Time array
	t = [0]

	# Initialise the trace
	trace = model.X[:]

	# Timestep and tracking indices
	idx = 0
	tracking_idx = -1;

	# Start the progress bar
	if not silent :
		helpers.progBarStart()

	# Preallocate array of tracked reactions
	if track :
		tracked_trans_array = np.zeros((model.N_events,int(tmax/tau)))
		counter = 0

	# Which transitions need to be capped ?
	cappedEvents = -(model.transition * (model.transition < 0))




	# Simulation loop #########################################################
	while t[-1] < tmax :

		# Compute a rates vector
		rates = [rate(model.X, t[-1]) for rate in model.rates]

		# Ensure all rates are valid
		if np.any(np.array(rates) < 0) :
			raise helpers.SimulationError("Negative rates found.")

		# Ensure there are possible events to continue with
		if not np.any(np.array(rates) > 0) :
			if not silent :
				print "No more possible events, stopping early !"
			return (t, trace) if not track else (t, trace, tracked_trans_array)


		# What the hell was this madness ?
		# It's here for book-keeping until next update, but
		# serves no purpose... Too much caffeine ?!
		"""
		# Determine which events occurred after ensuring that there's
		# a valid transition, and update the state space
		if np.sum(rates) <= 0 :
			if not silent :
				print "Stopping early - no valid transitions !"
			trace = np.delete(trace,range(idx+1,int(tmax/tau)+1),0)
			t = np.delete(t,range(idx+1,int(tmax/tau)+1),0)
			if track:
				tracked_trans_array = np.delete(tracked_trans_array,range(idx+1,int(tmax/tau)+1),1)
			break
		"""

		# Estimate the total number of events per transition
		estEvents = np.array([np.random.poisson(rate * tau) \
			for rate in rates], dtype=int)

		# Find the maximum number of removals from a state that can occur
		maxEvents = (cappedEvents * estEvents).sum(1)

		# If we want more removals than are possible from that state :
		if np.any((model.X - maxEvents) < 0) :

			# Find the largest discrepancy
			discrepancy = np.argmin(model.X - maxEvents)

			# Adjust done events
			estEvents = np.floor(estEvents * \
				model.X[discrepancy] / float(maxEvents[discrepancy])).astype(int)

		else :
			# Otherwise, there's no discrepancy between our estimate and the possible max
			discrepancy = -1



		# If there's at least one event but we can't do them all :
		if (discrepancy > -1) and np.sum(estEvents) > 0 :
			# Then we do fewer events, so adjust time increment accordingly
			t.append(t[idx] + tau * model.X[discrepancy] / float(maxEvents[discrepancy]))
		else :
			# Otherwise, add a full tau increment to the time array
			t.append(t[idx] + tau)



		# Update the state space
		model.X += np.sum(model.transition * estEvents, axis=1).astype(int)

		# Append new state space to trace, increment timestep index
		idx += 1
		trace = np.vstack((trace, model.X))




		# Record tracked reactions
		if track :
			tracked_trans_array[:, idx] = estEvents

		# Update progress bar
		if not silent :
			helpers.progBarUpdate(t[idx:(idx+1)], len(t))




	# Termination #############################################################

	# Reset state space unless the user wants to carry it forward
	if not propagate :
		model.X = np.array([model.initconds[x] for x in model.states], dtype=int)

	# Return
	return (t, trace, tracked_trans_array) if track else (t, trace)
예제 #5
0
	def sample(self, T, trajectories=100, bootstraps=500, tvals=1000, alpha=0.95, silent=False, **kwargs) :
		"""
		t, means, CI_low, CI_high = scotch.model.sample(T, trajectories=100, bootstraps=500, tvals=1000, alpha=0.95)
		------------------------------------------------------------------------------------------------------------

		Return summary statistics.

		T is the time until which the system is simulated.

		trajectories is the number of realisations to simulate.

		bootstraps is the number of bootstrap samples to draw to
		compute the confidence intervals.
		bootstraps=0 means CI_low and CI_high are not returned;
		only the mean trajectory is calculated.

		tvals is the number of time values to interpolate over to compute
		means and confidence intervals, and the number of time values
		returned to the user.

		alpha is the level at which confidence intervals are computed.
		The default, alpha=0.95, returns 95% confidence intervals around
		the mean of the trajectories.

		A number of optional arguments can be passed to this function.

		algorithm="gillespie", algorithm="tauLeap"
		Use the exact Gillespie Stochastic Simulation Algorithm, or
		a tau-leaping approximation for speed. More algorithms to come.

		If algorithm="tauLeap", you may want to specify
		tau=delta_t, where delta_t is the timestep at which tau-leaping
		should be done.
		By default, tau=1.

		If no algorithm is passed, we use the default algorithm as
		defined in the model. If none is set, it defaults to Gillespie.

		silent=False, silent=True
		If silent, don't use progress bars or return warnings.
		By default, silent=False.

		propagate=False, propagate=True
		If propagate, don't rebuild the model to initial conditions
		every time this is run; carry forward the last state space.
		By default, propagate=False.

		track=False, track=True,
		If track, we track all transitions as they occur and return
		these as a third output variable.
		By default, track=False. Tracking slows simulations considerably.

		"""

		# Sample repeatedly from the model and return summary statistics only
		all_t = []
		all_trace = []

		if not silent :
			print("Sampling trajectories.")
			helpers.progBarStart()

		# For each trajectory index :
		for traj in range(trajectories) :

			if not silent :
				helpers.progBarUpdate([traj-1, traj], trajectories)

			# Simulate the model
			t, trace = self.simulate(T, silent=True, **kwargs)

			# Append the time and traces to our arrays
			all_t.append(t)
			all_trace.append(trace)


		if not silent :
			print("\n")


		# For each state variable, interpolate
		int_t = np.linspace(0, T, tvals)
		int_trace = {}

		for dim_num, dim in enumerate(self.states) :
			int_trace[dim] = []

			for x, y in zip(all_t, all_trace) :
				t = np.append(x, T)
				trace = np.append(y[:, dim_num], np.nan)
				int_trace[dim].append(interp1d(t, trace)(int_t))

			int_trace[dim] = np.array(int_trace[dim])


		# Calculate the mean
		m = { dim : np.nanmean(int_trace[dim], axis=0) for dim in self.states }



		if bootstraps :
			# Bootstrap some 95% confidence intervals :
			means = {}

			# Draw a number of realisations with replacement
			idx = np.random.randint(0, trajectories, (bootstraps, trajectories))


			if not silent :
				print("Bootstrapping.")
				helpers.progBarStart()


			# For each dimension in the state space
			for dimidx, dim in enumerate(self.states) :
				means[dim] = []


				# and for each bootstrap iteration
				for iidx, i in enumerate(idx) :
					# Calculate the means of this iteration
					means[dim].append(np.nanmean(int_trace[dim][i], axis=0))

					if not silent :
						helpers.progBarUpdate([dimidx*(iidx-1), dimidx*iidx], len(self.states)*bootstraps)

				# After doing all iterations, sort the means
				means[dim] = np.sort(np.array(means[dim]), axis=0)


			# Extract intervals
			ci_low = { dim : means[dim][int((1-alpha)*bootstraps/2.)] for dim in self.states }
			ci_high = { dim : means[dim][int(1.-(1-alpha)*bootstraps/2.)] for dim in self.states }

			# Return everything
			return int_t, m, ci_low, ci_high

		else :
			return int_t, m