font=dict( family="Courier New, monospace", size=8, color="#7f7f7f" ) ) fig.update_xaxes(title_text="Scores", row=row, col=column) fig.update_yaxes(title_text="Frequency", row=row, col=column) # Overlay both histograms fig.update_layout(barmode='overlay') # Reduce opacity to see both histograms fig.update_traces(opacity=0.75) if __name__ == "__main__": df = readData(sys.argv) df_numerical = describe(df) titles = tuple(df_numerical.columns) fig = make_subplots( rows=ROWS, cols=COLUMNS, subplot_titles=titles, specs=[ # row 1 [{"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True},{"secondary_y": True} ], # row 2 [{"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True},{"secondary_y": True} ], # row 3 [{"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True}, {"secondary_y": True},{"secondary_y": True} ] ]) r = 1 index = 0
from Queue import Queue import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) from helpers import readData from env import env if __name__ == "__main__": airbnbList = readData(env['path_airbnb']) myQueue = Queue() for i in range(myQueue.limit): myQueue.insert(airbnbList[i]) myQueue.show() #myQueue.remove() print( "##############################################################################################################################" ) myQueue.tam() myQueue.remove() print( "##############################################################################################################################" ) myQueue.insert(airbnbList[0]) myQueue.show()
for i in clusters: plt.plot(i.x(), i.y(), 'bo') plt.show() def iterateClusters(vectors, clusters, old=[]): new = assignCluster(vectors, clusters) iterateClusters(vectors, new, clusters) if __name__ == "__main__": vectors = [] clusters = [] k = 7 # Number of clusters data = helpers.readData('data_1024.csv', '\t') for coord in zip(data['Distance_Feature'], data['Speeding_Feature']): vector = models.Point(coord, None) vectors.append(vector) clusters = generateClusters(vectors, k) coordList = [ ] # Used for detecting duplicates, once a duplicate is shown the loop will break. while True: clusters = assignCluster(vectors, clusters) for y in clusters: coordList.append(y.coordinates)