예제 #1
0
def generator_cfg():
    cfg = AttrDict()
    cfg.fonts = fonts
    # cfg.dict = lines
    cfg.bgs = bgs
    cfg.fs = [n for n in range(15,50,3)]
    cfg.sw = np.linspace(1,2.5,10)
    cfg.d = d
    cfg.fnames = file_ids
    _alph = ''
    for l in cfg.d:
        for c in l:
            if c not in _alph:
                _alph += c
    cfg.alph = ''.join(sorted(_alph))
    cfg.colors = 'black,yellow,red,green,magenta,blue'
    return cfg
예제 #2
0
def get_params():
    checkpoint_dir = './arxiv-predictive-coding'
    max_length = 50
    sampling_temperature = 0.7
    rnn_cell = tf.nn.rnn_cell.GRUCell
    rnn_hidden = 200
    rnn_layers = 2
    learning_rate = 0.002
    optimizer = tf.train.AdamOptimizer(0.002)
    gradient_clipping = 5
    batch_size = 100
    epochs = 20
    epoch_size = 200
    return AttrDict(**locals())
예제 #3
0
def get_params():
    corpus_name = "tiny-shakespeare.txt"
    checkpoint_dir = './shakespeare_model'
    max_length = 50
    sampling_temperature = 0.7
    rnn_cell = tf.nn.rnn_cell.GRUCell
    rnn_hidden = 200
    rnn_layers = 2
    learning_rate = 0.002
    optimizer = tf.train.AdamOptimizer(0.002)
    gradient_clipping = 5
    batch_size = 100
    epochs = 20
    epoch_size = 200
    return AttrDict(**locals())
예제 #4
0
import tensorflow as tf

from helpers import AttrDict

from Embedding import Embedding
from ImdbMovieReviews import ImdbMovieReviews
from preprocess_batched import preprocess_batched
from SequenceClassificationModel import SequenceClassificationModel

IMDB_DOWNLOAD_DIR = './imdb'
WIKI_VOCAB_DIR = '../01_wikipedia/wikipedia'
WIKI_EMBED_DIR = '../01_wikipedia/wikipedia'

params = AttrDict(
    rnn_cell=tf.nn.rnn_cell.GRUCell,
    rnn_hidden=300,
    optimizer=tf.train.RMSPropOptimizer(0.002),
    batch_size=20,
)

reviews = ImdbMovieReviews(IMDB_DOWNLOAD_DIR)
length = max(len(x[0]) for x in reviews)

embedding = Embedding(WIKI_VOCAB_DIR + '/vocabulary.bz2',
                      WIKI_EMBED_DIR + '/embeddings.npy', length)
batches = preprocess_batched(reviews, length, embedding, params.batch_size)

data = tf.placeholder(tf.float32, [None, length, embedding.dimensions])
target = tf.placeholder(tf.float32, [None, 2])
model = SequenceClassificationModel(data, target, params)

sess = tf.Session()
예제 #5
0
import tensorflow as tf
import numpy as np

from helpers import AttrDict

from OcrDataset import OcrDataset
from BidirectionalSequenceLabellingModel import \
    BidirectionalSequenceLabellingModel
from batched import batched

params = AttrDict(rnn_cell=tf.nn.rnn_cell.GRUCell,
                  rnn_hidden=300,
                  optimizer=tf.train.RMSPropOptimizer(0.002),
                  gradient_clipping=5,
                  batch_size=10,
                  epochs=5,
                  epoch_size=50)


def get_dataset():
    dataset = OcrDataset('./ocr')
    # Flatten images into vectors.
    dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1, ))
    # One-hot encode targets.
    target = np.zeros(dataset.target.shape + (26, ))
    for index, letter in np.ndenumerate(dataset.target):
        if letter:
            target[index][ord(letter) - ord('a')] = 1
    dataset.target = target
    # Shuffle order of examples.
    order = np.random.permutation(len(dataset.data))
예제 #6
0
import numpy as np

from batched import batched
from EmbeddingModel import EmbeddingModel
from skipgrams import skipgrams
from Wikipedia import Wikipedia

from helpers import AttrDict

WIKI_DOWNLOAD_DIR = './wikipedia'

params = AttrDict(
    vocabulary_size=10000,
    max_context=10,
    embedding_size=200,
    contrastive_examples=100,
    learning_rate=0.5,
    momentum=0.5,
    batch_size=1000,
)

data = tf.placeholder(tf.int32, [None])
target = tf.placeholder(tf.int32, [None])
model = EmbeddingModel(data, target, params)

corpus = Wikipedia(
    'https://dumps.wikimedia.org/enwiki/20160501/'
    'enwiki-20160501-pages-meta-current1.xml-p000000010p000030303.bz2',
    WIKI_DOWNLOAD_DIR, params.vocabulary_size)
examples = skipgrams(corpus, params.max_context)
batches = batched(examples, params.batch_size)
예제 #7
0
def trainer_cfg():
    cfg = AttrDict()
    cfg.DATANAME = './data2/data.csv'
    cfg.bs = 256
    cfg.epochs = 60
    cfg.lr = 1e-3
    cfg.wl2 = 1e-7
    cfg.pivot = 15
    cfg.valid_loss = float('Inf')
    cfg.train_loss = float('Inf')
    cfg.val_acc = float('Inf')
    cfg.train_acc = float('Inf')
    return cfg