import json import os import torch import pandas as pd from skimage import io, transform import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import helpers_preprocess as labels from PIL import Image import matplotlib.pyplot as plt (bad_detections_train, bad_detections_val, bad_detections_test) = \ labels.dry_run() # bad_detections_train,bad_detections_val,bad_detections_test=[],[],[] NO_VERB = 29 NO_OBJ_CAT = 80 # def get_ambiguity_score(prior_mat, labels_all): # def get_ambiguity_score(prior_mat, labels_all, labels_object): # labels_all_re = labels_all.reshape((labels_all.shape[0]*labels_all.shape[1], labels_all.shape[2])) # verb_prior = np.zeros((NO_VERB, NO_OBJ_CAT)) # ambiguity_score = np.zeros((labels_object.shape[0], NO_VERB)) # for c in range(NO_OBJ_CAT): # for w in range(NO_VERB): # cnt = 0
from __future__ import print_function, division import json import os import torch import pandas as pd from skimage import io, transform import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import helpers_preprocess as labels from PIL import Image bad_detections_train, bad_detections_val, bad_detections_test = labels.dry_run( ) # bad_detections_train,bad_detections_val,bad_detections_test=[],[],[] NO_VERB = 29 def vcoco_collate(batch): image_id = [] action_label = [] for index, item in enumerate(batch): image_id.append(torch.tensor(int(item['image_id']))) action_label.append(torch.tensor(item['action_label'])) return [torch.stack(image_id), torch.stack(action_label)] class Rescale(object):
#!/usr/bin/python # -*- coding: utf-8 -*- import json import os import torch import pandas as pd from skimage import io, transform import numpy as np import matplotlib.pyplot as plt from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import helpers_preprocess as labels from PIL import Image (bad_detections_train, bad_detections_test) = labels.dry_run() # bad_detections_train,bad_detections_val,bad_detections_test=[],[],[] NO_VERB = 117 NO_OBJ_CAT = 80 def get_ambiguity_score(prior_mat, labels_all, labels_object): labels_all_re = labels_all.reshape( (labels_all.shape[0] * labels_all.shape[1], labels_all.shape[2])) verb_prior = np.zeros((NO_VERB, NO_OBJ_CAT)) ambiguity_score = np.zeros((labels_object.shape[0], NO_VERB)) for c in range(NO_OBJ_CAT): for w in range(NO_VERB): cnt = 0