def test_write_images(self): """Test the write_images function.""" test_table = Table("Some Table") # Get test PDF some_pdf = "%s/minimal.pdf" % os.path.dirname(__file__) # This should work fine test_table.add_image(some_pdf) testdir = tmp_directory_name() self.addCleanup(shutil.rmtree, testdir) try: test_table.write_images(testdir) except TypeError: self.fail("Table.write_images raised an unexpected TypeError.") # Check that output file exists expected_file = os.path.join(testdir, "minimal.png") self.assertTrue(os.path.exists(expected_file)) # Try wrong type of input argument bad_arguments = [None, 5, {}, []] for argument in bad_arguments: with self.assertRaises(TypeError): test_table.write_images(argument) self.doCleanups()
def make_table(): params = ['r_ggH', 'r_VBF', 'r_VH', 'r_top'] # Load results + xsbr data inputMode = "mu" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_mu.json", "r") as jf: correlations = json.load(jf) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_expected_mu.json", "r") as jf: correlations_exp = json.load(jf) # Make table of results table = Table("Correlations: production mode signal strength") table.description = "Observed and expected correlations between the parameters in the production mode signal strength fit." table.location = "Results from additional material" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois_x = Variable("Parameter (x)", is_independent=True, is_binned=False) pois_y = Variable("Parameter (y)", is_independent=True, is_binned=False) c = Variable("Observed correlation", is_independent=False, is_binned=False) c.add_qualifier("SQRT(S)", 13, "TeV") c.add_qualifier("MH", '125.38', "GeV") c_exp = Variable("Expected correlation", is_independent=False, is_binned=False) c_exp.add_qualifier("SQRT(S)", 13, "TeV") c_exp.add_qualifier("MH", '125.38', "GeV") poiNames_x = [] poiNames_y = [] corr = [] corr_exp = [] for ipoi in params: for jpoi in params: poiNames_x.append(str(Translate(ipoi, translatePOIs))) poiNames_y.append(str(Translate(jpoi, translatePOIs))) # Extract correlation coefficient corr.append(correlations["%s__%s" % (ipoi, jpoi)]) corr_exp.append(correlations_exp["%s__%s" % (ipoi, jpoi)]) pois_x.values = poiNames_x pois_y.values = poiNames_y c.values = np.round(np.array(corr), 3) c_exp.values = np.round(np.array(corr_exp), 3) # Add variables to table table.add_variable(pois_x) table.add_variable(pois_y) table.add_variable(c) table.add_variable(c_exp) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/perproc_mu_corr.pdf" ) return table
def make_table(): xparam = 'kappa_V' yparam = 'kappa_F' # Load results + xsbr data inputMode = "kappas" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) # Extract observed results fobs = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Combine/runFits_UL_redo_kVkF/output_scan2D_syst_fixedMH_v2_obs_kappa_V_vs_kappa_F.root" f_in = ROOT.TFile(fobs) t_in = f_in.Get("limit") xvals, yvals, deltaNLL = [], [], [] ev_idx = 0 for ev in t_in: xvals.append(getattr(ev, xparam)) yvals.append(getattr(ev, yparam)) deltaNLL.append(getattr(ev, "deltaNLL")) # Convert to numpy arrays as required for interpolation x = np.asarray(xvals) y = np.asarray(yvals) dnll = np.asarray(deltaNLL) v = 2 * (deltaNLL - np.min(deltaNLL)) # Make table of results table = Table("Kappas 2D: vector boson and fermion") table.description = "Observed likelihood surface." table.location = "Results from Figure 22" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois_x = Variable(str(Translate(xparam, translatePOIs)), is_independent=True, is_binned=False) pois_y = Variable(str(Translate(yparam, translatePOIs)), is_independent=True, is_binned=False) q = Variable("Observed -2$\\Delta$NLL", is_independent=False, is_binned=False) q.add_qualifier("SQRT(S)", 13, "TeV") q.add_qualifier("MH", '125.38', "GeV") pois_x.values = x pois_y.values = y q.values = np.round(np.array(v), 2) # Add variables to table table.add_variable(pois_x) table.add_variable(pois_y) table.add_variable(q) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/scan2D_syst_obs_kappa_V_vs_kappa_F.pdf" ) return table
def test_add_image(self): """Get test PDF""" # Get test PDF some_pdf = "%s/minimal.pdf" % os.path.dirname(__file__) test_table = Table("Some Table") # This should work fine try: try: test_table.add_image(some_pdf) except RuntimeError: self.fail("Table.add_image raised an unexpected RuntimeError.") except TypeError: self.fail("Table.add_image raised an unexpected TypeError.") # Try wrong argument types wrong_type = [None, 5, {}, []] for argument in wrong_type: with self.assertRaises(TypeError): test_table.add_image(argument) # Try non-existing paths: nonexisting = ["/a/b/c/d/e", "./daskjl/aksj/asdasd.pdf"] for argument in nonexisting: with self.assertRaises(RuntimeError): test_table.add_image(argument)
def test_write_images_multiple_executions(self): """ write_images is supposed to only recreate output PNG files if the output file does not yet exist or is outdated relative to the input file. """ test_table = Table("Some Table") some_pdf = "%s/minimal.pdf" % os.path.dirname(__file__) test_table.add_image(some_pdf) testdir = "test_output" self.addCleanup(shutil.rmtree, testdir) expected_main_file = os.path.join(testdir, "minimal.png") expected_thumbnail_file = os.path.join(testdir, "thumb_minimal.png") # Output files should not yet exist self.assertTrue(not os.path.exists(expected_main_file)) self.assertTrue(not os.path.exists(expected_thumbnail_file)) # Run the function test_table.write_images(testdir) # Output files now exist self.assertTrue(os.path.exists(expected_main_file)) self.assertTrue(os.path.exists(expected_thumbnail_file)) # Make sure that output is not recreated if input file is unchanged modified_time_main = os.path.getmtime(expected_main_file) modified_time_thumbnail = os.path.getmtime(expected_thumbnail_file) test_table.write_images(testdir) self.assertEqual(modified_time_main, os.path.getmtime(expected_main_file)) self.assertEqual(modified_time_thumbnail, os.path.getmtime(expected_thumbnail_file)) # Make sure that a change in input file triggers recreation os.utime(some_pdf, None) test_table.write_images(testdir) self.assertTrue(modified_time_main < os.path.getmtime(expected_main_file)) self.assertTrue(modified_time_thumbnail < os.path.getmtime(expected_thumbnail_file))
def Plot_pp_pPb_Avg_FF_and_Ratio(Comb_Dict): label_size=22 axis_size=34 plot_power = False Colors = ["red","blue"] Markers = ["s","o"] fig = plt.figure(figsize=(8,8)) pp_sys_Error = 0 p_Pb_sys_Error = 0 fig.add_axes((0.1,0.3,0.88,0.6)) for SYS,sys_col,marker in zip(reversed(Systems),reversed(Colors),reversed(Markers)): #Systematics Efficiency_Uncertainty = 0.056*Comb_Dict["%s_Combined_FF"%(SYS)] Eta_Cor = Eta_Correction #see default_value.py for value Eta_Cor_Uncertainty = Eta_Correction_Uncertainty*Comb_Dict["%s_Combined_FF"%(SYS)] if not(Apply_Eta_Correction and SYS=="p-Pb"): Eta_Cor_Uncertainty = 0 #2% otherwise FF_Central = Comb_Dict["%s_Combined_FF"%(SYS)] #Eta Correction is applied when creating Dictionary! Sys_Uncertainty = np.sqrt(Efficiency_Uncertainty**2 + Comb_Dict["%s_purity_Uncertainty"%(SYS)]**2 + Eta_Cor_Uncertainty**2) if (SYS=="pp"): pp_sys_Error = Sys_Uncertainty elif (SYS=="p-Pb"): p_Pb_sys_Error=Sys_Uncertainty #Plots if (SYS=="pp"): leg_string = SYS if (SYS=="p-Pb"): leg_string = "p$-$Pb" plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0, yerr=Comb_Dict["%s_Combined_FF_Errors"%(SYS)][:NzT-ZT_OFF_PLOT],linewidth=1, fmt=marker,color=sys_col,capsize=0)#for lines plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT],marker,linewidth=0,color=sys_col, label=leg_string)#for legend without lines if (SYS == "pp"): Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT], bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color=sys_col,alpha=0.3,edgecolor=sys_col) else: Sys_Plot_pp = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Sys_Uncertainty[:NzT-ZT_OFF_PLOT]+Sys_Uncertainty[:NzT-ZT_OFF_PLOT], bottom=Comb_Dict["%s_Combined_FF"%(SYS)][:NzT-ZT_OFF_PLOT]-Sys_Uncertainty[:NzT-ZT_OFF_PLOT],width=zT_widths[:NzT-ZT_OFF_PLOT]*2,align='center',color=sys_col,fill=False,edgecolor="blue") if (plot_power): model,p,chi2dof = Fit_FF_PowerLaw(Comb_Dict,SYS) plt.plot(zT_centers[:NzT-ZT_OFF_PLOT], model, sys_col,label=r"%s $\alpha = %1.2f\pm 0.1 \chi^2 = %1.2f$"%(SYS,p,chi2dof)) if (Use_MC): plt.plot(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,'--',color="forestgreen",label="PYTHIA 8.2 Monash") plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT],pythia_FF,yerr=pythia_FF_Errors,fmt='--',color="forestgreen",capsize=0) plt.yscale('log') plt.ylabel(r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}|\Delta\varphi|\mathrm{d}\Delta\eta}$",fontsize=axis_size,y=0.76) plt.ylim(0.037,15) plt.yticks(fontsize=20) plt.xticks(fontsize=0) plt.xlim(0,0.65) plt.tick_params(which='both',direction='in',right=True,top=True,bottom=False,length=10) plt.tick_params(which='minor',length=5) #pp_sys_Error = (Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["pp"]**2+0.056**2) #p_Pb_sys_Error = (Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT])*math.sqrt(Rel_pUncert["p-Pb"]**2+0.056**2+Eta_Cor**2) Chi2,NDF,Pval = Get_pp_pPb_List_Chi2(Comb_Dict["pp_Combined_FF"][:NzT-ZT_OFF_PLOT], Comb_Dict["pp_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT], pp_sys_Error, Comb_Dict["p-Pb_Combined_FF"][:NzT-ZT_OFF_PLOT], Comb_Dict["p-Pb_Combined_FF_Errors"][:NzT-ZT_OFF_PLOT], p_Pb_sys_Error) leg = plt.legend(numpoints=1,frameon=True,edgecolor='white', framealpha=0.0, fontsize=label_size,handlelength=1,labelspacing=0.2,loc='lower left',bbox_to_anchor=(0.001, 0.05)) plt.annotate(r"ALICE, $\sqrt{s_{\mathrm{_{NN}}}}=5.02$ TeV",xy=(0.115,0.008),xycoords='axes fraction', ha='left',va='bottom',fontsize=label_size) plt.annotate(r"%1.0f < $p_\mathrm{T}^{\gamma}$ < %1.0f GeV/$c$"%(pTbins[0],pTbins[N_pT_Bins]),xy=(0.97, 0.81), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) plt.annotate(r"%1.1f < $p_\mathrm{T}^\mathrm{h}$ < %1.1f GeV/$c$"%(Min_Hadron_pT,Max_Hadron_pT),xy=(0.97, 0.89), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) plt.annotate("$\chi^2/\mathrm{ndf}$ = %1.1f/%i, $p$ = %1.2f"%(Chi2*NDF,NDF,Pval), xy=(0.97, 0.97), xycoords='axes fraction', ha='right', va='top', fontsize=label_size) #HEP FF Fig5 = Table("Figure 5 Top Panel") Fig5.description = "$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit." Fig5.location = "Data from Figure 5 Top Panel, Page 15" Fig5.keywords["observables"] = ["$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"] Fig5.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf") # x-axis: zT zt = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="") zt.values = zT_edges Fig5.add_variable(zt) # y-axis: p-Pb Yields pPb_data = Variable("p$-$Pb conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pPb_data.values = Comb_Dict["p-Pb_Combined_FF"] pPb_sys = Uncertainty("p-Pb Systematic", is_symmetric=True) pPb_sys.values = p_Pb_sys_Error pPb_stat = Uncertainty("p-Pb Statistical", is_symmetric=True) pPb_stat.values = Comb_Dict["p-Pb_Combined_FF_Errors"] pPb_data.add_uncertainty(pPb_sys) pPb_data.add_uncertainty(pPb_stat) # y-axis: pp Yields pp_data = Variable("pp conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pp_data.values = Comb_Dict["pp_Combined_FF"] pp_sys = Uncertainty("pp Systematic", is_symmetric=True) pp_sys.values = pp_sys_Error pp_stat = Uncertainty("pp Statistical", is_symmetric=True) pp_stat.values = Comb_Dict["pp_Combined_FF_Errors"] pp_data.add_uncertainty(pp_sys) pp_data.add_uncertainty(pp_stat) # y-axis: PYTHIA Yields pythia_data = Variable("PYTHIA conditional yield of associated hadrons", is_independent=False, is_binned=False, units="") pythia_data.values = pythia_FF pythia_stat = Uncertainty("PYTHIA Statistical", is_symmetric=True) pythia_stat.values = pythia_FF_Errors pythia_data.add_uncertainty(pythia_stat) #Add everything to the HEP Table Fig5.add_variable(pPb_data) Fig5.add_variable(pp_data) Fig5.add_variable(pythia_data) submission.add_table(Fig5) #RATIO SECOND Y_AXIS fig.add_axes((0.1,0.1,0.88,0.2)) pPb_Combined = Comb_Dict["p-Pb_Combined_FF"] pPb_Combined_Errors = Comb_Dict["p-Pb_Combined_FF_Errors"] pPb_purity_Uncertainty = Comb_Dict["p-Pb_purity_Uncertainty"] pp_Combined = Comb_Dict["pp_Combined_FF"] pp_Combined_Errors = Comb_Dict["pp_Combined_FF_Errors"] pp_purity_Uncertainty = Comb_Dict["pp_purity_Uncertainty"] Ratio = pPb_Combined/pp_Combined Ratio_Error = np.sqrt((pPb_Combined_Errors/pPb_Combined)**2 + (pp_Combined_Errors/pp_Combined)**2)*Ratio Ratio_Plot = plt.errorbar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio[:NzT-ZT_OFF_PLOT], yerr=Ratio_Error[:NzT-ZT_OFF_PLOT],xerr=zT_widths[:NzT-ZT_OFF_PLOT]*0, fmt='ko',capsize=0, ms=6,lw=1) #Save np.save("npy_files/%s_Averaged_FF_Ratio_%s.npy"%(Shower,description_string),Ratio) np.save("npy_files/%s_Averaged_FF_Ratio_Errors_%s.npy"%(Shower,description_string),Ratio_Error) Purity_Uncertainty = np.sqrt((pp_purity_Uncertainty/pp_Combined)**2 + (pPb_purity_Uncertainty/pPb_Combined)**2)*Ratio Efficiency_Uncertainty = np.ones(len(pPb_Combined))*0.056*math.sqrt(2)*Ratio Eta_Cor_Uncertainty = Eta_Correction_Uncertainty/Comb_Dict["p-Pb_Combined_FF"]*Ratio if (CorrectedP): Ratio_Systematic = np.sqrt(Purity_Uncertainty**2 + Efficiency_Uncertainty**2 + Eta_Cor_Uncertainty**2) Sys_Plot = plt.bar(zT_centers[:NzT-ZT_OFF_PLOT], Ratio_Systematic[:NzT-ZT_OFF_PLOT]+Ratio_Systematic[:NzT-ZT_OFF_PLOT], bottom=Ratio[:NzT-ZT_OFF_PLOT]-Ratio_Systematic[:NzT-ZT_OFF_PLOT], width=zT_widths[:NzT-ZT_OFF_PLOT]*2, align='center',color='black',alpha=0.25) ### ROOT LINEAR and CONSTANT FITS ### Ratio_TGraph = TGraphErrors() for izt in range (len(Ratio)-ZT_OFF_PLOT): Ratio_TGraph.SetPoint(izt,zT_centers[izt],Ratio[izt]) Ratio_TGraph.SetPointError(izt,0,Ratio_Error[izt]) Ratio_TGraph.Fit("pol0","S") f = Ratio_TGraph.GetFunction("pol0") chi2_red = f.GetChisquare()/f.GetNDF() pval = f.GetProb() p0 = f.GetParameter(0) p0e = f.GetParError(0) p0col = "grey" Show_Fits = True if (Show_Fits): sys_const = 0.19 #23% relative from purity + tracking #sys_const = 0.504245 #IRC plt.annotate("$c = {0:.2f} \pm {1:.2f} \pm {2:.2f}$".format(p0,p0e,sys_const), xy=(0.98, 0.9), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9) plt.annotate(r"$p = %1.2f$"%(pval), xy=(0.98, 0.75), xycoords='axes fraction', ha='right', va='top', color="black",fontsize=label_size,alpha=.9) c_error = math.sqrt(p0e**2 + sys_const**2) plt.fill_between(np.arange(0,1.1,0.1), p0+c_error, p0-c_error,color=p0col,alpha=.3) ###LABELS/AXES### plt.axhline(y=1, color='k', linestyle='--') plt.xlabel("${z_\mathrm{T}} = p_\mathrm{T}^{\mathrm{h}}/p_\mathrm{T}^\gamma$",fontsize=axis_size-8,x=0.9) plt.ylabel(r"$\frac{\mathrm{p-Pb}}{\mathrm{pp}}$",fontsize=axis_size,y=0.5) plt.ylim((-0.0, 2.8)) plt.xticks(fontsize=20) plt.yticks([0.5,1.0,1.5,2.0,2.5],fontsize=20) plt.xlim(0,0.65) plt.tick_params(which='both',direction='in',right=True,bottom=True,top=True,length=10) plt.tick_params(which='both',direction='in',top=True,length=5) plt.savefig("pics/%s/%s/Final_FFunction_and_Ratio.pdf"%(Shower,description_string), bbox_inches = "tight") plt.show() #RATIO HEP FigRatio = Table("Figure 5 Bottom Panel") FigRatio.description = r"$\gamma^\mathrm{iso}$-tagged fragmentation function for pp (red) and p$-$Pb data (blue) at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The boxes represent the systematic uncertainties while the vertical bars indicate the statistical uncertainties. The dashed green line corresponds to PYTHIA 8.2 Monash Tune. The $\chi^2$ test for the comparison of pp and p$-$Pb data incorporates correlations among different $z_\mathrm{T}$ intervals. A constant that was fit to the ratio is shown as grey band, with the width indicating the uncertainty on the fit." FigRatio.location = "Data from Figure 5, Bottom Panel, Page 15" FigRatio.keywords["observables"] = [r"$\frac{1}{N_{\mathrm{\gamma}}}\frac{\mathrm{d}^3N}{\mathrm{d}z_{\mathrm{T}}\mathrm{d}\Delta\varphi\mathrm{d}\Delta\eta}$"] FigRatio.add_image("./pics/LO/zT_Rebin_8_006zT06zT13fnew/Final_FFunction_and_Ratio.pdf") # x-axis: zT zt_ratio = Variable(r"$z_\mathrm{T}$", is_independent=True, is_binned=True, units="") zt_ratio.values = zT_edges FigRatio.add_variable(zt_ratio) # y-axis: p-Pb Yields Ratio_HEP = Variable("Ratio conditional yield of associated hadrons in pp and p$-$Pb", is_independent=False, is_binned=False, units="") Ratio_HEP.values = Ratio Ratio_sys = Uncertainty("Ratio Systematic", is_symmetric=True) Ratio_sys.values = Ratio_Systematic Ratio_stat = Uncertainty("Ratio Statistical", is_symmetric=True) Ratio_stat.values = Ratio_Error Ratio_HEP.add_uncertainty(Ratio_stat) Ratio_HEP.add_uncertainty(Ratio_sys) FigRatio.add_variable(Ratio_HEP) submission.add_table(FigRatio)
def make_table(): params = [ 'r_ggH_0J_low', 'r_ggH_0J_high', 'r_ggH_1J_low', 'r_ggH_1J_med', 'r_ggH_1J_high', 'r_ggH_2J_low', 'r_ggH_2J_med', 'r_ggH_2J_high', 'r_ggH_BSM_low', 'r_ggH_BSM_med', 'r_ggH_BSM_high', 'r_qqH_low_mjj_low_pthjj', 'r_qqH_low_mjj_high_pthjj', 'r_qqH_high_mjj_low_pthjj', 'r_qqH_high_mjj_high_pthjj', 'r_qqH_VHhad', 'r_qqH_BSM', 'r_WH_lep_low', 'r_WH_lep_med', 'r_WH_lep_high', 'r_ZH_lep', 'r_ttH_low', 'r_ttH_medlow', 'r_ttH_medhigh', 'r_ttH_high', 'r_ttH_veryhigh', 'r_tH' ] # Load results + xsbr data inputXSBRjson = "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/jsons/xsbr_theory_stage1p2_extended_125p38.json" inputExpResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/expected_UL_redo.json' inputObsResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/observed_UL_redo.json' inputMode = "stage1p2_extended" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) with open(inputXSBRjson, "r") as jsonfile: xsbr_theory = json.load(jsonfile) observed = CopyDataFromJsonFile(inputObsResultsJson, inputMode, params) expected = CopyDataFromJsonFile(inputExpResultsJson, inputMode, params) mh = float(re.sub("p", ".", inputXSBRjson.split("_")[-1].split(".json")[0])) # Make table of results table = Table("STXS stage 1.2 minimal merging scheme") table.description = "Results of the minimal merging scheme STXS fit. The best fit cross sections are shown together with the respective 68% C.L. intervals. The uncertainty is decomposed into the systematic and statistical components. The expected uncertainties on the fitted parameters are given in brackets. Also listed are the SM predictions for the cross sections and the theoretical uncertainty in those predictions." table.location = "Results from Figure 20 and Table 13" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois = Variable("STXS region", is_independent=True, is_binned=False) poiNames = [] for poi in params: poiNames.append(str(Translate(poi, translatePOIs))) pois.values = poiNames # Dependent variables # SM predict xsbr_sm = Variable("SM predicted cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr_sm.add_qualifier("SQRT(S)", 13, "TeV") xsbr_sm.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr_sm.add_qualifier("MH", '125.38', "GeV") theory = Uncertainty("Theory", is_symmetric=False) xsbr_vals = [] xsbr_hi_th, xsbr_lo_th = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal']) xsbr_hi_th.append(xsbr_theory[poi]['High01Sigma']) xsbr_lo_th.append(-1 * abs(xsbr_theory[poi]['Low01Sigma'])) xsbr_sm.values = np.round(np.array(xsbr_vals), 3) theory.values = zip(np.round(np.array(xsbr_lo_th), 3), np.round(np.array(xsbr_hi_th), 3)) xsbr_sm.add_uncertainty(theory) # Observed cross section xsbr = Variable("Observed cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr.add_qualifier("SQRT(S)", 13, "TeV") xsbr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr.add_qualifier("MH", '125.38', "GeV") # Add uncertainties tot = Uncertainty("Total", is_symmetric=False) stat = Uncertainty("Stat only", is_symmetric=False) syst = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal'] * observed[poi]['Val']) xsbr_hi_tot.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorHi'])) xsbr_lo_tot.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['ErrorLo'])) xsbr_hi_stat.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatHi'])) xsbr_lo_stat.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['StatLo'])) xsbr_hi_syst.append( abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystHi'])) xsbr_lo_syst.append( -1 * abs(xsbr_theory[poi]['nominal'] * observed[poi]['SystLo'])) tot.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) stat.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) syst.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbr.values = np.round(np.array(xsbr_vals), 3) xsbr.add_uncertainty(tot) xsbr.add_uncertainty(stat) xsbr.add_uncertainty(syst) # Observed ratio to SM xsbrr = Variable("Observed ratio to SM", is_independent=False, is_binned=False, units='') xsbrr.add_qualifier("SQRT(S)", 13, "TeV") xsbrr.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbrr.add_qualifier("MH", '125.38', "GeV") # Add uncertainties totr = Uncertainty("Total", is_symmetric=False) statr = Uncertainty("Stat only", is_symmetric=False) systr = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(observed[poi]['Val']) xsbr_hi_tot.append(abs(observed[poi]['ErrorHi'])) xsbr_lo_tot.append(-1 * abs(observed[poi]['ErrorLo'])) xsbr_hi_stat.append(abs(observed[poi]['StatHi'])) xsbr_lo_stat.append(-1 * abs(observed[poi]['StatLo'])) xsbr_hi_syst.append(abs(observed[poi]['SystHi'])) xsbr_lo_syst.append(-1 * abs(observed[poi]['SystLo'])) totr.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) statr.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) systr.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbrr.values = np.round(np.array(xsbr_vals), 3) xsbrr.add_uncertainty(totr) xsbrr.add_uncertainty(statr) xsbrr.add_uncertainty(systr) # Expected cross section xsbr_exp = Variable("Expected cross section times branching ratio", is_independent=False, is_binned=False, units='fb') xsbr_exp.add_qualifier("SQRT(S)", 13, "TeV") xsbr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbr_exp.add_qualifier("MH", '125.38', "GeV") # Add uncertainties tot_exp = Uncertainty("Total", is_symmetric=False) stat_exp = Uncertainty("Stat only", is_symmetric=False) syst_exp = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(xsbr_theory[poi]['nominal']) xsbr_hi_tot.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorHi'])) xsbr_lo_tot.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['ErrorLo'])) xsbr_hi_stat.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatHi'])) xsbr_lo_stat.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['StatLo'])) xsbr_hi_syst.append( abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystHi'])) xsbr_lo_syst.append( -1 * abs(xsbr_theory[poi]['nominal'] * expected[poi]['SystLo'])) tot_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) stat_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) syst_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbr_exp.values = np.round(np.array(xsbr_vals), 3) xsbr_exp.add_uncertainty(tot_exp) xsbr_exp.add_uncertainty(stat_exp) xsbr_exp.add_uncertainty(syst_exp) # Expected ratio to SM xsbrr_exp = Variable("Expected ratio to SM", is_independent=False, is_binned=False, units='') xsbrr_exp.add_qualifier("SQRT(S)", 13, "TeV") xsbrr_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') xsbrr_exp.add_qualifier("MH", '125.38', "GeV") # Add uncertainties totr_exp = Uncertainty("Total", is_symmetric=False) statr_exp = Uncertainty("Stat only", is_symmetric=False) systr_exp = Uncertainty("Syst", is_symmetric=False) xsbr_vals = [] xsbr_hi_tot, xsbr_lo_tot = [], [] xsbr_hi_stat, xsbr_lo_stat = [], [] xsbr_hi_syst, xsbr_lo_syst = [], [] for poi in params: xsbr_vals.append(1.00) xsbr_hi_tot.append(abs(expected[poi]['ErrorHi'])) xsbr_lo_tot.append(-1 * abs(expected[poi]['ErrorLo'])) xsbr_hi_stat.append(abs(expected[poi]['StatHi'])) xsbr_lo_stat.append(-1 * abs(expected[poi]['StatLo'])) xsbr_hi_syst.append(abs(expected[poi]['SystHi'])) xsbr_lo_syst.append(-1 * abs(expected[poi]['SystLo'])) totr_exp.values = zip(np.round(np.array(xsbr_lo_tot), 3), np.round(np.array(xsbr_hi_tot), 3)) statr_exp.values = zip(np.round(np.array(xsbr_lo_stat), 3), np.round(np.array(xsbr_hi_stat), 3)) systr_exp.values = zip(np.round(np.array(xsbr_lo_syst), 3), np.round(np.array(xsbr_hi_syst), 3)) xsbrr_exp.values = np.round(np.array(xsbr_vals), 3) xsbrr_exp.add_uncertainty(totr_exp) xsbrr_exp.add_uncertainty(statr_exp) xsbrr_exp.add_uncertainty(systr_exp) # Add variables to table table.add_variable(pois) table.add_variable(xsbr_sm) table.add_variable(xsbr) table.add_variable(xsbrr) table.add_variable(xsbr_exp) table.add_variable(xsbrr_exp) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/stxs_dist_stage1p2_minimal.pdf" ) return table
fig2_ul_Mjets = Variable("Misid. jets", is_independent=False, is_binned=False, units="Events per bin") fig2_ul_Mjets.values = fig2_ul_in[:, 9] fig2_ul_Mjets_stat = Uncertainty("stat", is_symmetric=True) fig2_ul_Mjets_stat.values = fig2_ul_in[:, 10] fig2_ul_Mjets.add_uncertainty(fig2_ul_Mjets_stat) fig2_ul.add_variable(fig2_ul_pt) fig2_ul.add_variable(fig2_ul_Data) fig2_ul.add_variable(fig2_ul_Wgg) fig2_ul.add_variable(fig2_ul_Mele) fig2_ul.add_variable(fig2_ul_Others) fig2_ul.add_variable(fig2_ul_Mjets) fig2_ul.add_image("input/Figure_002-a.pdf") submission.add_table(fig2_ul) #FIGURE 2 UPPER RIGHT fig2_ur = Table("Figure 2 (upper right)") fig2_ur.description = "Distribution of the transverse momentum of the diphoton system for the $\mathrm{W}\gamma\gamma$ muon channel. The predicted yields are shown with their pre-fit normalisations. The observed data, the expected signal contribution and the background estimates are presented with error bars showing the corresponding statistical uncertainties." fig2_ur.location = "Data from Figure 2 on Page 6 of the preprint" fig2_ur.keywords["observables"] = ["Diphoton pT"] fig2_ur.keywords["reactions"] = [ "P P --> W GAMMA GAMMA --> MUON NU GAMMA GAMMA" ] fig2_ur_in = np.loadtxt("input/fig2_ur.txt", skiprows=1) #diphoton pT
"$\pm$%.3f" % (datassm[4][3]), "$\pm$%.3f" % (datassm[5][3]), "$\pm$%.3f" % (datassm[6][3]), "$\pm$%.3f" % (datassm[7][3]), "$\pm$%.3f" % (datassm[8][3]) ] syst.add_qualifier("SQRT(S)", "13", "TeV") syst.add_qualifier("LUMINOSITY", "137", "fb$^{-1}$") tabssm.add_variable(ssmType) tabssm.add_variable(ssm) tabssm.add_variable(tot) tabssm.add_variable(stat) tabssm.add_variable(syst) tabssm.add_image("../figures/summaryResult.png") #tablessm.keywords() tabssm.keywords["reactions"] = [ "P P --> TOP TOPBAR X", "P P --> TOP TOPBAR GAMMA" ] tabssm.keywords["cmenergies"] = [13000.0] tabssm.keywords["observables"] = ["SIG/SIG"] tabssm.keywords["phrases"] = [ "Top", "Quark", "Photon", "lepton+jets", "semileptonic", "Cross Section", "Proton-Proton Scattering", "Inclusive", "Differential" ] submission.add_table(tabssm) ### ### Fig 9a
BulkG.add_qualifier("Efficiency times acceptance", "Bulk graviton --> WW") BulkG.add_qualifier("SQRT(S)", 13, "TeV") Wprime = Variable("Efficiency times acceptance", is_independent=False, is_binned=False, units="") Wprime.values = data[:, 2] Wprime.add_qualifier("Efficiency times acceptance", "Wprime --> WZ") Wprime.add_qualifier("SQRT(S)", 13, "TeV") table.add_variable(d) table.add_variable(BulkG) table.add_variable(Wprime) table.add_image("hepdata_lib/examples/example_inputs/signalEffVsMass.pdf") submission.add_table(table) for table in submission.tables: table.keywords["cmenergies"] = [13000] ### Histogram from hepdata_lib import Table table2 = Table("Figure 4a") table2.description = "Distribution in the reconstructed B quark mass, after applying all selections to events with no forward jet, compared to the background distributions estimated before fitting. The plot refers to the low-mass mB analysis. The expectations for signal MC events are given by the blue histogram lines. Different contributions to background are indicated by the colour-filled histograms. The grey-hatched error band shows total uncertainties in the background expectation. The ratio of observations to background expectations is given in the lower panel, together with the total uncertainties prior to fitting, indicated by the grey-hatched band." table2.location = "Data from Figure 4 (upper left), located on page 12." table2.keywords["observables"] = ["N"] table2.add_image( "hepdata_lib/examples/example_inputs/CMS-B2G-17-009_Figure_004-a.pdf")
def make_table(): params = [ 'r_ggH_0J_low', 'r_ggH_0J_high', 'r_ggH_1J_low', 'r_ggH_1J_med', 'r_ggH_1J_high', 'r_ggH_2J_low', 'r_ggH_2J_med', 'r_ggH_2J_high', 'r_ggH_VBFlike', 'r_ggH_BSM', 'r_qqH_VBFlike', 'r_qqH_VHhad', 'r_qqH_BSM', 'r_WH_lep', 'r_ZH_lep', 'r_ttH', 'r_tH' ] # Load results + xsbr data inputMode = "stage1p2_maximal" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_stage1p2_maximal.json", "r") as jf: correlations = json.load(jf) with open( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/correlations_expected_stage1p2_maximal.json", "r") as jf: correlations_exp = json.load(jf) # Make table of results table = Table("Correlations: STXS stage 1.2 maximal merging scheme") table.description = "Observed and expected correlations between the parameters in the STXS stage 1.2 maximal merging fit." table.location = "Results from Figure 19" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois_x = Variable("STXS region (x)", is_independent=True, is_binned=False) pois_y = Variable("STXS region (y)", is_independent=True, is_binned=False) c = Variable("Observed correlation", is_independent=False, is_binned=False) c.add_qualifier("SQRT(S)", 13, "TeV") c.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') c.add_qualifier("MH", '125.38', "GeV") c_exp = Variable("Expected correlation", is_independent=False, is_binned=False) c_exp.add_qualifier("SQRT(S)", 13, "TeV") c_exp.add_qualifier("ABS(YRAP(HIGGS))", '<2.5') c_exp.add_qualifier("MH", '125.38', "GeV") poiNames_x = [] poiNames_y = [] corr = [] corr_exp = [] for ipoi in params: for jpoi in params: poiNames_x.append(str(Translate(ipoi, translatePOIs))) poiNames_y.append(str(Translate(jpoi, translatePOIs))) # Extract correlation coefficient corr.append(correlations["%s__%s" % (ipoi, jpoi)]) corr_exp.append(correlations_exp["%s__%s" % (ipoi, jpoi)]) pois_x.values = poiNames_x pois_y.values = poiNames_y c.values = np.round(np.array(corr), 3) c_exp.values = np.round(np.array(corr_exp), 3) # Add variables to table table.add_variable(pois_x) table.add_variable(pois_y) table.add_variable(c) table.add_variable(c_exp) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/corrMatrix_stage1p2_maximal.pdf" ) return table
def make_table(): params = ['r_ggH', 'r_VBF', 'r_VH', 'r_top', 'r_inclusive'] # Load results + xsbr data inputExpResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/expected_UL_redo.json' inputObsResultsJson = '/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/flashggFinalFit/Plots/observed_UL_redo.json' inputMode = "mu" translatePOIs = LoadTranslations("translate/pois_%s.json" % inputMode) observed = CopyDataFromJsonFile(inputObsResultsJson, inputMode, params) expected = CopyDataFromJsonFile(inputExpResultsJson, inputMode, params) # Make table of results table = Table("Signal strengths") table.description = "Best-fit values and 68% confidence intervals for the signal strength modifiers. The uncertainty is decomposed ino the theoretical systematic, experimental systematic and statistical components. Additionally, the expected uncertainties derived using an asimov dataset are provided." table.location = "Results from Figure 16" table.keywords["reactions"] = ["P P --> H ( --> GAMMA GAMMA ) X"] pois = Variable("Parameter", is_independent=True, is_binned=False) poiNames = [] for poi in params: poiNames.append(str(Translate(poi, translatePOIs))) pois.values = poiNames # Dependent variables # Observed values obs = Variable("Observed", is_independent=False, is_binned=False, units='') obs.add_qualifier("SQRT(S)", 13, "TeV") obs.add_qualifier("MH", '125.38', "GeV") # Add uncertainties tot = Uncertainty("Total", is_symmetric=False) th = Uncertainty("Th. syst", is_symmetric=False) exp = Uncertainty("Exp. syst", is_symmetric=False) stat = Uncertainty("Stat only", is_symmetric=False) vals = [] hi_tot, lo_tot = [], [] hi_th, lo_th = [], [] hi_exp, lo_exp = [], [] hi_stat, lo_stat = [], [] for poi in params: vals.append(observed[poi]['Val']) hi_tot.append(abs(observed[poi]['ErrorHi'])) lo_tot.append(-1 * abs(observed[poi]['ErrorLo'])) hi_th.append(abs(observed[poi]['TheoryHi'])) lo_th.append(-1 * abs(observed[poi]['TheoryLo'])) hi_exp.append(abs(observed[poi]['SystHi'])) lo_exp.append(-1 * abs(observed[poi]['SystLo'])) hi_stat.append(abs(observed[poi]['StatHi'])) lo_stat.append(-1 * abs(observed[poi]['StatLo'])) tot.values = zip(np.round(np.array(lo_tot), 3), np.round(np.array(hi_tot), 3)) th.values = zip(np.round(np.array(lo_th), 3), np.round(np.array(hi_th), 3)) exp.values = zip(np.round(np.array(lo_exp), 3), np.round(np.array(hi_exp), 3)) stat.values = zip(np.round(np.array(lo_stat), 3), np.round(np.array(hi_stat), 3)) obs.values = np.round(np.array(vals), 3) obs.add_uncertainty(tot) obs.add_uncertainty(th) obs.add_uncertainty(exp) obs.add_uncertainty(stat) # Expected values ex = Variable("Expected", is_independent=False, is_binned=False, units='') ex.add_qualifier("SQRT(S)", 13, "TeV") ex.add_qualifier("MH", '125.38', "GeV") # Add uncertainties etot = Uncertainty("Total", is_symmetric=False) eth = Uncertainty("Th. syst", is_symmetric=False) eexp = Uncertainty("Exp. syst", is_symmetric=False) estat = Uncertainty("Stat only", is_symmetric=False) vals = [] hi_tot, lo_tot = [], [] hi_th, lo_th = [], [] hi_exp, lo_exp = [], [] hi_stat, lo_stat = [], [] for poi in params: vals.append(1.00) hi_tot.append(abs(expected[poi]['ErrorHi'])) lo_tot.append(-1 * abs(expected[poi]['ErrorLo'])) hi_th.append(abs(expected[poi]['TheoryHi'])) lo_th.append(-1 * abs(expected[poi]['TheoryLo'])) hi_exp.append(abs(expected[poi]['SystHi'])) lo_exp.append(-1 * abs(expected[poi]['SystLo'])) hi_stat.append(abs(expected[poi]['StatHi'])) lo_stat.append(-1 * abs(expected[poi]['StatLo'])) etot.values = zip(np.round(np.array(lo_tot), 3), np.round(np.array(hi_tot), 3)) eth.values = zip(np.round(np.array(lo_th), 3), np.round(np.array(hi_th), 3)) eexp.values = zip(np.round(np.array(lo_exp), 3), np.round(np.array(hi_exp), 3)) estat.values = zip(np.round(np.array(lo_stat), 3), np.round(np.array(hi_stat), 3)) ex.values = np.round(np.array(vals), 3) ex.add_uncertainty(etot) ex.add_uncertainty(eth) ex.add_uncertainty(eexp) ex.add_uncertainty(estat) # Add variables to table table.add_variable(pois) table.add_variable(obs) table.add_variable(ex) # Add figure table.add_image( "/afs/cern.ch/work/j/jlangfor/hgg/legacy/FinalFits/UL/Dec20/CMSSW_10_2_13/src/OtherScripts/HEPdata/hepdata_lib/hig-19-015/inputs/perproc_mu_coloured.pdf" ) return table
def addLimitPlot(submission, config): table = Table(config["name"]) table.description = config["description"] table.location = config["location"] table.keywords["observables"] = ["SIG"] table.keywords["reactions"] = ["P P --> TOP --> tt + 6j"] table.add_image(config["image"]) reader = RootFileReader(config["inputData"]) data = reader.read_limit_tree() stop_pair_Br = np.array([ 10.00, 4.43, 2.15, 1.11, 0.609, 0.347, 0.205, 0.125, 0.0783, 0.0500, 0.0326, 0.0216, 0.0145, 0.00991, 0.00683, 0.00476, 0.00335, 0.00238, 0.00170, 0.00122, 0.000887, 0.000646, 0.000473 ]) stop_pair_Br1SPpercent = np.array([ 6.65, 6.79, 6.99, 7.25, 7.530, 7.810, 8.120, 8.450, 8.8000, 9.1600, 9.5300, 9.9300, 10.3300, 10.76, 11.2, 11.65, 12.12, 12.62, 13.13, 13.66, 14.21, 14.78, 15.37 ]) stop_pair_unc = stop_pair_Br * stop_pair_Br1SPpercent / 100.0 stop_pair_up = stop_pair_Br + stop_pair_unc stop_pair_down = stop_pair_Br - stop_pair_unc nData = len(data) for mass_id in range(0, nData): data[mass_id][1:] = stop_pair_Br[mass_id] * data[mass_id][1:] ##################################################################################### d = Variable("Top squark mass", is_independent=True, is_binned=False, units="GeV") d.values = data[:, 0] sig = Variable("Top squark cross section", is_independent=False, is_binned=False, units="pb") sig.values = np.array(stop_pair_Br[:nData]) sig.add_qualifier("Limit", "") sig.add_qualifier("SQRT(S)", 13, "TeV") sig.add_qualifier("LUMINOSITY", 137, "fb$^{-1}$") obs = Variable("Observed cross section upper limit at 95% CL", is_independent=False, is_binned=False, units="pb") obs.values = data[:, 6] obs.add_qualifier("Limit", "Observed") obs.add_qualifier("SQRT(S)", 13, "TeV") obs.add_qualifier("LUMINOSITY", 137, "fb$^{-1}$") exp = Variable("Expected cross section upper limit at 95% CL", is_independent=False, is_binned=False, units="pb") exp.values = data[:, 3] exp.add_qualifier("Limit", "Expected") exp.add_qualifier("SQRT(S)", 13, "TeV") exp.add_qualifier("LUMINOSITY", 137, "fb$^{-1}$") unc_sig = Uncertainty("1 s.d.", is_symmetric=False) unc_sig.set_values_from_intervals(zip(stop_pair_up[:nData], stop_pair_down[:nData]), nominal=sig.values) sig.add_uncertainty(unc_sig) # +/- 1 sigma unc_1s = Uncertainty("1 s.d.", is_symmetric=False) unc_1s.set_values_from_intervals(zip(data[:, 2], data[:, 4]), nominal=exp.values) exp.add_uncertainty(unc_1s) # +/- 2 sigma unc_2s = Uncertainty("2 s.d.", is_symmetric=False) unc_2s.set_values_from_intervals(zip(data[:, 1], data[:, 5]), nominal=exp.values) exp.add_uncertainty(unc_2s) table.add_variable(d) table.add_variable(sig) table.add_variable(obs) table.add_variable(exp) submission.add_table(table)