def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, wavelength, bVec, eVec, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ """ npts = len(xyo_det) refineFlag = np.hstack([pFlag, dFlag]) # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit dParams = pFull[-len(dFlag):] xy_unwarped = dFunc(xyo_det[:, :2], dParams) # detector quantities rMat_d = xf.makeDetectorRotMat(pFull[:3]) tVec_d = pFull[3:6].reshape(3, 1) # sample quantities chi = pFull[6] tVec_s = pFull[7:10].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[10:13]) tVec_c = pFull[13:16].reshape(3, 1) gVec_c = np.dot(bMat, hkls_idx) vMat_s = mutil.vecMVToSymm(vInv) # stretch tensor comp matrix from MV notation in SAMPLE frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # reciprocal lattice vectors in SAMPLE frame gHat_s = mutil.unitVector(gVec_s) # unit reciprocal lattice vectors in SAMPLE frame gHat_c = np.dot(rMat_c.T, gHat_s) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull: may want to scale back finite difference step size" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference( calc_omes, xyo_det[:, 2] ) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]).flatten() if returnScalarValue: retval = sum( retval ) return retval
def angs_of_xy(self, xy_det, *args): """ vstacked (tth, eta) pairs of cartesian coordinates *) wrapper for transforms.detectorXYtoGvec args: ome, chi """ xy_det = np.atleast_2d( xy_det) # so len() gives right number even if one point npts = len(xy_det) if len(args) > 0: ome = np.atleast_1d(args[0]).flatten() assert len(ome) == npts, "ome must be the same length as xy_det!" chi = args[1] angles = np.zeros((npts, 2)) gVecs = np.zeros((npts, 3)) for i in range(npts): rMat_s = xf.makeOscillRotMat([chi, ome[i]]) tmp = xf.detectorXYToGvec(xy_det, self.rMat, rMat_s, self.tVec, self.tVec_s, self.tVec_c, distortion=self.distortion, beamVec=self.bVec, etaVec=self.eVec) angles[i, :] = tmp[0] gVecs[i, :] = tmp[1] pass else: angles, gVecs = xf.detectorXYToGvec(xy_det, self.rMat, self.rMat_s, self.tVec, self.tVec_s, self.tVec_c, distortion=self.distortion, beamVec=self.bVec, etaVec=self.eVec) pass # filter out NaNs not_there = np.isnan(angles[:, 0]) tTh = angles[-not_there, 0] eta = angles[-not_there, 1] return tTh, eta
def angs_of_xy(self, xy_det, *args): """ vstacked (tth, eta) pairs of cartesian coordinates *) wrapper for transforms.detectorXYtoGvec args: ome, chi """ xy_det = np.atleast_2d(xy_det) # so len() gives right number even if one point npts = len(xy_det) if len(args) > 0: ome = np.atleast_1d(args[0]).flatten() assert len(ome) == npts, "ome must be the same length as xy_det!" chi = args[1] angles = np.zeros((npts, 2)) gVecs = np.zeros((npts, 3)) for i in range(npts): rMat_s = xf.makeOscillRotMat([chi, ome[i]]) tmp = xf.detectorXYToGvec(xy_det, self.rMat, rMat_s, self.tVec, self.tVec_s, self.tVec_c, distortion=self.distortion, beamVec=self.bVec, etaVec=self.eVec) angles[i, :] = tmp[0] gVecs[i, :] = tmp[1] pass else: angles, gVecs = xf.detectorXYToGvec(xy_det, self.rMat, self.rMat_s, self.tVec, self.tVec_s, self.tVec_c, distortion=self.distortion, beamVec=self.bVec, etaVec=self.eVec) pass # filter out NaNs not_there = np.isnan(angles[:, 0]) tTh = angles[-not_there, 0] eta = angles[-not_there, 1] return tTh, eta
def objFuncFitGrain(gFit, gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat, wavelength, bVec, eVec, dFunc, dParams, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ gFull[0] = expMap_c[0] gFull[1] = expMap_c[1] gFull[2] = expMap_c[2] gFull[3] = tVec_c[0] gFull[4] = tVec_c[1] gFull[5] = tVec_c[2] gFull[6] = vInv_MV[0] gFull[7] = vInv_MV[1] gFull[8] = vInv_MV[2] gFull[9] = vInv_MV[3] gFull[10] = vInv_MV[4] gFull[11] = vInv_MV[5] detectorParams[0] = tiltAngles[0] detectorParams[1] = tiltAngles[1] detectorParams[2] = tiltAngles[2] detectorParams[3] = tVec_d[0] detectorParams[4] = tVec_d[1] detectorParams[5] = tVec_d[2] detectorParams[6] = chi detectorParams[7] = tVec_s[0] detectorParams[8] = tVec_s[1] detectorParams[9] = tVec_s[2] """ npts = len(xyo_det) gFull[gFlag] = gFit xy_unwarped = dFunc(xyo_det[:, :2], dParams) rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3]) tVec_d = detectorParams[3:6].reshape(3, 1) chi = detectorParams[6] tVec_s = detectorParams[7:10].reshape(3, 1) rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3]) tVec_c = gFull[3:6].reshape(3, 1) vInv_s = gFull[6:] vMat_s = mutil.vecMVToSymm(vInv_s) # NOTE: Inverse of V from F = V * R gVec_c = np.dot(bMat, hkls_idx) # gVecs with magnitudes in CRYSTAL frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # stretched gVecs in SAMPLE frame gHat_c = mutil.unitVector( np.dot(rMat_c.T, gVec_s)) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv_s, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference( calc_omes, xyo_det[:, 2] ) retval = mutil.rowNorm( np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]) ).flatten() if returnScalarValue: retval = sum( retval ) return retval
def mockup_experiment(): # user options # each grain is provided in the form of a quaternion. # The following array contains the quaternions for the array. Note that the # quaternions are in the columns, with the first row (row 0) being the real # part w. We assume that we are dealing with unit quaternions quats = np.array([[ 0.91836393, 0.90869942], [ 0.33952917, 0.1834835 ], [ 0.17216207, 0.10095837], [ 0.10811041, 0.36111851]]) n_grains = quats.shape[-1] # last dimension provides the number of grains phis = 2.*np.arccos(quats[0, :]) # phis are the angles for the quaternion ns = mutil.unitVector(quats[1:, :]) # ns contains the rotation axis as an unit vector exp_maps = np.array([phis[i]*ns[:, i] for i in range(n_grains)]) rMat_c = rot.rotMatOfQuat(quats) cvec = np.arange(-25, 26) X, Y, Z = np.meshgrid(cvec, cvec, cvec) crd0 = 1e-3*np.vstack([X.flatten(), Y.flatten(), Z.flatten()]).T crd1 = crd0 + np.r_[0.100, 0.100, 0] crds = np.array([crd0, crd1]) # make grain parameters grain_params = [] for i in range(n_grains): for j in range(len(crd0)): grain_params.append( np.hstack([exp_maps[i, :], crds[i][j, :], xf.vInv_ref.flatten()]) ) # scan range and period ome_period = (0, 2*np.pi) ome_range = [ome_period,] ome_step = np.radians(1.) nframes = 0 for i in range(len(ome_range)): del_ome = ome_range[i][1]-ome_range[i][0] nframes += int((ome_range[i][1]-ome_range[i][0])/ome_step) ome_edges = np.arange(nframes+1)*ome_step # instrument with open('./retiga.yml', 'r') as fildes: instr_cfg = yaml.load(fildes) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3,1) chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3,1) rMat_d = xfcapi.makeDetectorRotMat(tiltAngles) rMat_s = xfcapi.makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] col_ps = pixel_size[1] row_ps = pixel_size[0] row_dim = row_ps*nrows # in mm col_dim = col_ps*ncols # in mm panel_dims = [(-0.5*ncols*col_ps, -0.5*nrows*row_ps), ( 0.5*ncols*col_ps, 0.5*nrows*row_ps)] x_col_edges = col_ps * (np.arange(ncols + 1) - 0.5*ncols) y_row_edges = row_ps * (np.arange(nrows, -1, -1) - 0.5*nrows) #x_col_edges = np.arange(panel_dims[0][0], panel_dims[1][0] + 0.5*col_ps, col_ps) #y_row_edges = np.arange(panel_dims[0][1], panel_dims[1][1] + 0.5*row_ps, row_ps) rx, ry = np.meshgrid(x_col_edges, y_row_edges) gcrds = xfcapi.detectorXYToGvec(np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d, tVec_s, np.zeros(3)) max_pixel_tth = np.amax(gcrds[0][0]) detector_params = np.hstack([tiltAngles, tVec_d.flatten(), chi, tVec_s.flatten()]) distortion = None # a different parametrization for the sensor (makes for faster quantization) base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]]) deltas = np.array([x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0], ome_edges[1] - ome_edges[0]]) inv_deltas = 1.0/deltas clip_vals = np.array([ncols, nrows]) # dilation max_diameter = np.sqrt(3)*0.005 row_dilation = np.ceil(0.5 * max_diameter/row_ps) col_dilation = np.ceil(0.5 * max_diameter/col_ps) # crystallography data from hexrd import valunits gold = material.Material('gold') gold.sgnum = 225 gold.latticeParameters = [4.0782, ] gold.hklMax = 200 gold.beamEnergy = valunits.valWUnit("wavelength", "ENERGY", 52, "keV") gold.planeData.exclusions = None gold.planeData.tThMax = max_pixel_tth #note this comes from info in the detector ns = argparse.Namespace() # grains related information ns.n_grains = n_grains # this can be derived from other values... ns.rMat_c = rMat_c # n_grains rotation matrices (one per grain) ns.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain) ns.plane_data = gold.planeData ns.detector_params = detector_params ns.pixel_size = pixel_size ns.ome_range = ome_range ns.ome_period = ome_period ns.x_col_edges = x_col_edges ns.y_row_edges = y_row_edges ns.ome_edges = ome_edges ns.ncols = ncols ns.nrows = nrows ns.nframes = nframes # used only in simulate... ns.rMat_d = rMat_d ns.tVec_d = tVec_d ns.chi = chi # note this is used to compute S... why is it needed? ns.tVec_s = tVec_s # ns.rMat_s = rMat_s # ns.tVec_s = tVec_s ns.rMat_c = rMat_c ns.row_dilation = row_dilation ns.col_dilation = col_dilation ns.distortion = distortion ns.panel_dims = panel_dims # used only in simulate... ns.base = base ns.inv_deltas = inv_deltas ns.clip_vals = clip_vals return grain_params, ns
]]) vHat1 = xf.unitVector(vec.T) vHat2 = xfcapi.unitRowVector(vec) print "unitVector results match: ", np.linalg.norm( vHat1.T - vHat2) / np.linalg.norm(vHat1) < epsf tAng = np.array( [0.0011546340766314521, -0.0040527538387122993, -0.0026221336905160211]) rMat1 = xf.makeDetectorRotMat(tAng) rMat2 = xfcapi.makeDetectorRotMat(tAng) print "makeDetectorRotMat results match: ", np.linalg.norm( rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf oAng = np.array([-0.0011591608938627839, 0.0011546340766314521]) rMat1 = xf.makeOscillRotMat(oAng) rMat2 = xfcapi.makeOscillRotMat(oAng) print "makeOscillRotMat results match: ", np.linalg.norm( rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf eMap = np.array([0.66931818, -0.98578066, 0.73593251]) rMat1 = xf.makeRotMatOfExpMap(eMap) rMat2 = xfcapi.makeRotMatOfExpMap(eMap) print "makeRotMatOfExpMap results match: ", np.linalg.norm( rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf axis = np.array([0.66931818, -0.98578066, 0.73593251]) rMat1 = xf.makeBinaryRotMat(axis) rMat2 = xfcapi.makeBinaryRotMat(axis) print "makeBinaryRotMat results match: ", np.linalg.norm( rMat1 - rMat2) / np.linalg.norm(rMat1) < epsf
def gen_trial_exp_data(grain_out_file,det_file,mat_file, x_ray_energy, mat_name, max_tth, comp_thresh, chi2_thresh, misorientation_bnd, \ misorientation_spacing,ome_range_deg, nframes, beam_stop_width): print('Loading Grain Data.....') #gen_grain_data ff_data = np.loadtxt(grain_out_file) #ff_data=np.atleast_2d(ff_data[2,:]) exp_maps = ff_data[:, 3:6] t_vec_ds = ff_data[:, 6:9] # completeness = ff_data[:, 1] chi2 = ff_data[:, 2] n_grains = exp_maps.shape[0] rMat_c = rot.rotMatOfExpMap(exp_maps.T) cut = np.where( np.logical_and(completeness > comp_thresh, chi2 < chi2_thresh))[0] exp_maps = exp_maps[cut, :] t_vec_ds = t_vec_ds[cut, :] chi2 = chi2[cut] # Add Misorientation mis_amt = misorientation_bnd * np.pi / 180. spacing = misorientation_spacing * np.pi / 180. mis_steps = int(misorientation_bnd / misorientation_spacing) ori_pts = np.arange(-mis_amt, (mis_amt + (spacing * 0.999)), spacing) num_ori_grid_pts = ori_pts.shape[0]**3 num_oris = exp_maps.shape[0] XsO, YsO, ZsO = np.meshgrid(ori_pts, ori_pts, ori_pts) grid0 = np.vstack([XsO.flatten(), YsO.flatten(), ZsO.flatten()]).T exp_maps_expanded = np.zeros([num_ori_grid_pts * num_oris, 3]) t_vec_ds_expanded = np.zeros([num_ori_grid_pts * num_oris, 3]) for ii in np.arange(num_oris): pts_to_use = np.arange(num_ori_grid_pts) + ii * num_ori_grid_pts exp_maps_expanded[pts_to_use, :] = grid0 + np.r_[exp_maps[ii, :]] t_vec_ds_expanded[pts_to_use, :] = np.r_[t_vec_ds[ii, :]] exp_maps = exp_maps_expanded t_vec_ds = t_vec_ds_expanded n_grains = exp_maps.shape[0] rMat_c = rot.rotMatOfExpMap(exp_maps.T) print('Loading Instrument Data.....') instr_cfg = yaml.load(open(det_file, 'r')) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape( 3, 1) #tVec_d[0] = -0.05 chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1) rMat_d = makeDetectorRotMat(tiltAngles) rMat_s = makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] # row_dim = pixel_size[0]*nrows # in mm # col_dim = pixel_size[1]*ncols # in mm x_col_edges = pixel_size[1] * (np.arange(ncols + 1) - 0.5 * ncols) y_row_edges = pixel_size[0] * (np.arange(nrows + 1) - 0.5 * nrows)[::-1] panel_dims = [(-0.5 * ncols * pixel_size[1], -0.5 * nrows * pixel_size[0]), (0.5 * ncols * pixel_size[1], 0.5 * nrows * pixel_size[0])] # a bit overkill, but grab max two-theta from all pixel transforms rx, ry = np.meshgrid(x_col_edges, y_row_edges) gcrds = detectorXYToGvec( np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d, tVec_s, np.zeros(3)) pixel_tth = gcrds[0][0] detector_params = np.hstack( [tiltAngles, tVec_d.flatten(), chi, tVec_s.flatten()]) ome_period_deg = (ome_range_deg[0][0], (ome_range_deg[0][0] + 360.) ) #degrees ome_step_deg = (ome_range_deg[0][1] - ome_range_deg[0][0]) / nframes #degrees ome_period = (ome_period_deg[0] * np.pi / 180., ome_period_deg[1] * np.pi / 180.) ome_range = [(ome_range_deg[0][0] * np.pi / 180., ome_range_deg[0][1] * np.pi / 180.)] ome_step = ome_step_deg * np.pi / 180. ome_edges = np.arange(nframes + 1) * ome_step + ome_range[0][0] #fixed 2/26/17 base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]]) deltas = np.array([ x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0], ome_edges[1] - ome_edges[0] ]) inv_deltas = 1.0 / deltas clip_vals = np.array([ncols, nrows]) print('Loading Material Data.....') #Load Material Data materials = cpl.load(open(mat_file, "rb")) check = np.zeros(len(materials)) for ii in np.arange(len(materials)): #print materials[ii].name check[ii] = materials[ii].name == mat_name mat_used = materials[np.where(check)[0][0]] #niti_mart.beamEnergy = valunits.valWUnit("wavelength","ENERGY",61.332,"keV") mat_used.beamEnergy = valunits.valWUnit("wavelength", "ENERGY", x_ray_energy, "keV") mat_used.planeData.exclusions = np.zeros(len( mat_used.planeData.exclusions), dtype=bool) if max_tth > 0.: mat_used.planeData.tThMax = np.amax(np.radians(max_tth)) else: mat_used.planeData.tThMax = np.amax(pixel_tth) pd = mat_used.planeData print('Final Assembly.....') experiment = argparse.Namespace() # grains related information experiment.n_grains = n_grains # this can be derived from other values... experiment.rMat_c = rMat_c # n_grains rotation matrices (one per grain) experiment.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain) experiment.plane_data = pd experiment.detector_params = detector_params experiment.pixel_size = pixel_size experiment.ome_range = ome_range experiment.ome_period = ome_period experiment.x_col_edges = x_col_edges experiment.y_row_edges = y_row_edges experiment.ome_edges = ome_edges experiment.ncols = ncols experiment.nrows = nrows experiment.nframes = nframes # used only in simulate... experiment.rMat_d = rMat_d experiment.tVec_d = np.atleast_2d(detector_params[3:6]).T experiment.chi = detector_params[ 6] # note this is used to compute S... why is it needed? experiment.tVec_s = np.atleast_2d(detector_params[7:]).T experiment.rMat_c = rMat_c experiment.distortion = None experiment.panel_dims = panel_dims # used only in simulate... experiment.base = base experiment.inv_deltas = inv_deltas experiment.clip_vals = clip_vals experiment.bsw = beam_stop_width if mis_steps == 0: nf_to_ff_id_map = cut else: nf_to_ff_id_map = np.tile(cut, 27 * mis_steps) return experiment, nf_to_ff_id_map
def pull_spots(self, plane_data, grain_params, imgser_dict, tth_tol=0.25, eta_tol=1., ome_tol=1., npdiv=2, threshold=10, eta_ranges=[ (-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), dirname='results', filename=None, output_format='text', save_spot_list=False, quiet=True, check_only=False, interp='nearest'): """ Exctract reflection info from a rotation series encoded as an OmegaImageseries object """ # grain parameters rMat_c = makeRotMatOfExpMap(grain_params[:3]) tVec_c = grain_params[3:6] # grab omega ranges from first imageseries # # WARNING: all imageseries AND all wedges within are assumed to have # the same omega values; put in a check that they are all the same??? oims0 = imgser_dict[imgser_dict.keys()[0]] ome_ranges = [ np.radians([i['ostart'], i['ostop']]) for i in oims0.omegawedges.wedges ] # delta omega in DEGREES grabbed from first imageseries in the dict delta_ome = oims0.omega[0, 1] - oims0.omega[0, 0] # make omega grid for frame expansion around reference frame # in DEGREES ndiv_ome, ome_del = make_tolerance_grid( delta_ome, ome_tol, 1, adjust_window=True, ) # generate structuring element for connected component labeling if ndiv_ome == 1: label_struct = ndimage.generate_binary_structure(2, 2) else: label_struct = ndimage.generate_binary_structure(3, 3) # simulate rotation series sim_results = self.simulate_rotation_series(plane_data, [ grain_params, ], eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period) # patch vertex generator (global for instrument) tol_vec = 0.5 * np.radians([ -tth_tol, -eta_tol, -tth_tol, eta_tol, tth_tol, eta_tol, tth_tol, -eta_tol ]) # prepare output if requested if filename is not None and output_format.lower() == 'hdf5': this_filename = os.path.join(dirname, filename) writer = io.GrainDataWriter_h5(os.path.join(dirname, filename), self.write_config(), grain_params) # ===================================================================== # LOOP OVER PANELS # ===================================================================== iRefl = 0 compl = [] output = dict.fromkeys(self.detectors) for detector_id in self.detectors: # initialize text-based output writer if filename is not None and output_format.lower() == 'text': output_dir = os.path.join(dirname, detector_id) if not os.path.exists(output_dir): os.makedirs(output_dir) this_filename = os.path.join(output_dir, filename) writer = io.PatchDataWriter(this_filename) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict(self.chi, self.tvec) native_area = panel.pixel_area # pixel ref area # pull out the OmegaImageSeries for this panel from input dict ome_imgser = imgser_dict[detector_id] # extract simulation results sim_results_p = sim_results[detector_id] hkl_ids = sim_results_p[0][0] hkls_p = sim_results_p[1][0] ang_centers = sim_results_p[2][0] xy_centers = sim_results_p[3][0] ang_pixel_size = sim_results_p[4][0] # now verify that full patch falls on detector... # ???: strictly necessary? # # patch vertex array from sim nangs = len(ang_centers) patch_vertices = (np.tile(ang_centers[:, :2], (1, 4)) + np.tile(tol_vec, (nangs, 1))).reshape( 4 * nangs, 2) ome_dupl = np.tile(ang_centers[:, 2], (4, 1)).T.reshape(len(patch_vertices), 1) # find vertices that all fall on the panel det_xy, _ = xrdutil._project_on_detector_plane( np.hstack([patch_vertices, ome_dupl]), panel.rmat, rMat_c, self.chi, panel.tvec, tVec_c, self.tvec, panel.distortion) _, on_panel = panel.clip_to_panel(det_xy, buffer_edges=True) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(nangs, 4), axis=1) patch_xys = det_xy.reshape(nangs, 4, 2)[patch_is_on] # re-filter... hkl_ids = hkl_ids[patch_is_on] hkls_p = hkls_p[patch_is_on, :] ang_centers = ang_centers[patch_is_on, :] xy_centers = xy_centers[patch_is_on, :] ang_pixel_size = ang_pixel_size[patch_is_on, :] # TODO: add polygon testing right here! # done <JVB 06/21/16> if check_only: patch_output = [] for i_pt, angs in enumerate(ang_centers): # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(angs[2]) + ome_del # ...vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkls_p[i_pt, :]) print(msg) continue else: these_vertices = patch_xys[i_pt] ijs = panel.cartToPixel(these_vertices) ii, jj = polygon(ijs[:, 0], ijs[:, 1]) contains_signal = False for i_frame in frame_indices: contains_signal = contains_signal or np.any( ome_imgser[i_frame][ii, jj] > threshold) compl.append(contains_signal) patch_output.append((ii, jj, frame_indices)) else: # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, ang_centers[:, :2], ang_pixel_size, omega=ang_centers[:, 2], tth_tol=tth_tol, eta_tol=eta_tol, rMat_c=rMat_c, tVec_c=tVec_c, distortion=panel.distortion, npdiv=npdiv, quiet=True, beamVec=self.beam_vector) # GRAND LOOP over reflections for this panel patch_output = [] for i_pt, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xy, conn, areas, xy_eval, ijs = patch prows, pcols = areas.shape nrm_fac = areas / float(native_area) nrm_fac = nrm_fac / np.min(nrm_fac) # grab hkl info hkl = hkls_p[i_pt, :] hkl_id = hkl_ids[i_pt] # edge arrays tth_edges = vtx_angs[0][0, :] delta_tth = tth_edges[1] - tth_edges[0] eta_edges = vtx_angs[1][:, 0] delta_eta = eta_edges[1] - eta_edges[0] # need to reshape eval pts for interpolation xy_eval = np.vstack( [xy_eval[0].flatten(), xy_eval[1].flatten()]).T # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(ang_centers[i_pt, 2]) + ome_del # ???: vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkl) print(msg) continue else: # initialize spot data parameters # !!! maybe change these to nan to not f**k up writer peak_id = -999 sum_int = None max_int = None meas_angs = None meas_xy = None # quick check for intensity contains_signal = False patch_data_raw = [] for i_frame in frame_indices: tmp = ome_imgser[i_frame][ijs[0], ijs[1]] contains_signal = contains_signal or np.any( tmp > threshold) patch_data_raw.append(tmp) pass patch_data_raw = np.stack(patch_data_raw, axis=0) compl.append(contains_signal) if contains_signal: # initialize patch data array for intensities if interp.lower() == 'bilinear': patch_data = np.zeros( (len(frame_indices), prows, pcols)) for i, i_frame in enumerate(frame_indices): patch_data[i] = \ panel.interpolate_bilinear( xy_eval, ome_imgser[i_frame], pad_with_nans=False ).reshape(prows, pcols) # * nrm_fac elif interp.lower() == 'nearest': patch_data = patch_data_raw # * nrm_fac else: msg = "interpolation option " + \ "'%s' not understood" raise (RuntimeError, msg % interp) # now have interpolated patch data... labels, num_peaks = ndimage.label( patch_data > threshold, structure=label_struct) slabels = np.arange(1, num_peaks + 1) if num_peaks > 0: peak_id = iRefl coms = np.array( ndimage.center_of_mass(patch_data, labels=labels, index=slabels)) if num_peaks > 1: center = np.r_[patch_data.shape] * 0.5 center_t = np.tile(center, (num_peaks, 1)) com_diff = coms - center_t closest_peak_idx = np.argmin( np.sum(com_diff**2, axis=1)) else: closest_peak_idx = 0 pass # end multipeak conditional coms = coms[closest_peak_idx] # meas_omes = \ # ome_edges[0] + (0.5 + coms[0])*delta_ome meas_omes = \ ome_eval[0] + coms[0]*delta_ome meas_angs = np.hstack([ tth_edges[0] + (0.5 + coms[2]) * delta_tth, eta_edges[0] + (0.5 + coms[1]) * delta_eta, mapAngle(np.radians(meas_omes), ome_period) ]) # intensities # - summed is 'integrated' over interpolated # data # - max is max of raw input data sum_int = np.sum(patch_data[ labels == slabels[closest_peak_idx]]) max_int = np.max(patch_data_raw[ labels == slabels[closest_peak_idx]]) # ???: Should this only use labeled pixels? # Those are segmented from interpolated data, # not raw; likely ok in most cases. # need MEASURED xy coords gvec_c = anglesToGVec(meas_angs, chi=self.chi, rMat_c=rMat_c, bHat_l=self.beam_vector) rMat_s = makeOscillRotMat( [self.chi, meas_angs[2]]) meas_xy = gvecToDetectorXY( gvec_c, panel.rmat, rMat_s, rMat_c, panel.tvec, self.tvec, tVec_c, beamVec=self.beam_vector) if panel.distortion is not None: # FIXME: distortion handling meas_xy = panel.distortion[0]( np.atleast_2d(meas_xy), panel.distortion[1], invert=True).flatten() pass # FIXME: why is this suddenly necessary??? meas_xy = meas_xy.squeeze() pass # end num_peaks > 0 else: patch_data = patch_data_raw pass # end contains_signal # write output if filename is not None: if output_format.lower() == 'text': writer.dump_patch(peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, xy_centers[i_pt], meas_xy) elif output_format.lower() == 'hdf5': xyc_arr = xy_eval.reshape(prows, pcols, 2).transpose( 2, 0, 1) writer.dump_patch( detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy) pass # end conditional on write output pass # end conditional on check only patch_output.append([ peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, meas_xy, ]) iRefl += 1 pass # end patch conditional pass # end patch loop output[detector_id] = patch_output if filename is not None and output_format.lower() == 'text': writer.close() pass # end detector loop if filename is not None and output_format.lower() == 'hdf5': writer.close() return compl, output
def gen_trial_exp_data(grain_out_file,det_file,mat_file, x_ray_energy, mat_name, max_tth, comp_thresh, chi2_thresh, misorientation_bnd, \ misorientation_spacing,ome_range_deg, nframes, beam_stop_width): print('Loading Grain Data.....') #gen_grain_data ff_data=np.loadtxt(grain_out_file) #ff_data=np.atleast_2d(ff_data[2,:]) exp_maps=ff_data[:,3:6] t_vec_ds=ff_data[:,6:9] # completeness=ff_data[:,1] chi2=ff_data[:,2] n_grains=exp_maps.shape[0] rMat_c = rot.rotMatOfExpMap(exp_maps.T) cut=np.where(np.logical_and(completeness>comp_thresh,chi2<chi2_thresh))[0] exp_maps=exp_maps[cut,:] t_vec_ds=t_vec_ds[cut,:] chi2=chi2[cut] # Add Misorientation mis_amt=misorientation_bnd*np.pi/180. spacing=misorientation_spacing*np.pi/180. ori_pts = np.arange(-mis_amt, (mis_amt+(spacing*0.999)),spacing) num_ori_grid_pts=ori_pts.shape[0]**3 num_oris=exp_maps.shape[0] XsO, YsO, ZsO = np.meshgrid(ori_pts, ori_pts, ori_pts) grid0 = np.vstack([XsO.flatten(), YsO.flatten(), ZsO.flatten()]).T exp_maps_expanded=np.zeros([num_ori_grid_pts*num_oris,3]) t_vec_ds_expanded=np.zeros([num_ori_grid_pts*num_oris,3]) for ii in np.arange(num_oris): pts_to_use=np.arange(num_ori_grid_pts)+ii*num_ori_grid_pts exp_maps_expanded[pts_to_use,:]=grid0+np.r_[exp_maps[ii,:] ] t_vec_ds_expanded[pts_to_use,:]=np.r_[t_vec_ds[ii,:] ] exp_maps=exp_maps_expanded t_vec_ds=t_vec_ds_expanded n_grains=exp_maps.shape[0] rMat_c = rot.rotMatOfExpMap(exp_maps.T) print('Loading Instrument Data.....') instr_cfg = yaml.load(open(det_file, 'r')) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1) #tVec_d[0] = -0.05 chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1) rMat_d = makeDetectorRotMat(tiltAngles) rMat_s = makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] # row_dim = pixel_size[0]*nrows # in mm # col_dim = pixel_size[1]*ncols # in mm x_col_edges = pixel_size[1]*(np.arange(ncols+1) - 0.5*ncols) y_row_edges = pixel_size[0]*(np.arange(nrows+1) - 0.5*nrows)[::-1] panel_dims = [(-0.5*ncols*pixel_size[1], -0.5*nrows*pixel_size[0]), ( 0.5*ncols*pixel_size[1], 0.5*nrows*pixel_size[0])] # a bit overkill, but grab max two-theta from all pixel transforms rx, ry = np.meshgrid(x_col_edges, y_row_edges) gcrds = detectorXYToGvec(np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d, tVec_s, np.zeros(3)) pixel_tth = gcrds[0][0] detector_params = np.hstack([tiltAngles, tVec_d.flatten(), chi, tVec_s.flatten()]) ome_period_deg=(ome_range_deg[0][0], (ome_range_deg[0][0]+360.)) #degrees ome_step_deg=(ome_range_deg[0][1]-ome_range_deg[0][0])/nframes #degrees ome_period = (ome_period_deg[0]*np.pi/180.,ome_period_deg[1]*np.pi/180.) ome_range = [(ome_range_deg[0][0]*np.pi/180.,ome_range_deg[0][1]*np.pi/180.)] ome_step = ome_step_deg*np.pi/180. ome_edges = np.arange(nframes+1)*ome_step+ome_range[0][0]#fixed 2/26/17 base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]]) deltas = np.array([x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0], ome_edges[1] - ome_edges[0]]) inv_deltas = 1.0/deltas clip_vals = np.array([ncols, nrows]) print('Loading Material Data.....') #Load Material Data materials=cpl.load(open( mat_file, "rb" )) check=np.zeros(len(materials)) for ii in np.arange(len(materials)): #print materials[ii].name check[ii]=materials[ii].name==mat_name mat_used=materials[np.where(check)[0][0]] #niti_mart.beamEnergy = valunits.valWUnit("wavelength","ENERGY",61.332,"keV") mat_used.beamEnergy = valunits.valWUnit("wavelength","ENERGY",x_ray_energy,"keV") mat_used.planeData.exclusions = np.zeros(len(mat_used.planeData.exclusions), dtype=bool) if max_tth>0.: mat_used.planeData.tThMax = np.amax(np.radians(max_tth)) else: mat_used.planeData.tThMax = np.amax(pixel_tth) pd=mat_used.planeData print('Final Assembly.....') experiment = argparse.Namespace() # grains related information experiment.n_grains = n_grains # this can be derived from other values... experiment.rMat_c = rMat_c # n_grains rotation matrices (one per grain) experiment.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain) experiment.plane_data = pd experiment.detector_params = detector_params experiment.pixel_size = pixel_size experiment.ome_range = ome_range experiment.ome_period = ome_period experiment.x_col_edges = x_col_edges experiment.y_row_edges = y_row_edges experiment.ome_edges = ome_edges experiment.ncols = ncols experiment.nrows = nrows experiment.nframes = nframes# used only in simulate... experiment.rMat_d = rMat_d experiment.tVec_d = np.atleast_2d(detector_params[3:6]).T experiment.chi = detector_params[6] # note this is used to compute S... why is it needed? experiment.tVec_s = np.atleast_2d(detector_params[7:]).T experiment.rMat_c = rMat_c experiment.distortion = None experiment.panel_dims = panel_dims # used only in simulate... experiment.base = base experiment.inv_deltas = inv_deltas experiment.clip_vals = clip_vals experiment.bsw = beam_stop_width nf_to_ff_id_map=cut return experiment, nf_to_ff_id_map
pass ome_edges = np.arange(nframes + 1) * ome_step #============================================================================== # %% INSTRUMENT #============================================================================== # load config instr_cfg = yaml.load(open('./retiga.yml', 'r')) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1) chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1) rMat_d = makeDetectorRotMat(tiltAngles) rMat_s = makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] row_dim = pixel_size[0] * nrows # in mm col_dim = pixel_size[1] * ncols # in mm x_col_edges = pixel_size[1] * (np.arange(ncols + 1) - 0.5 * ncols) y_row_edges = pixel_size[0] * (np.arange(nrows + 1) - 0.5 * nrows)[::-1] panel_dims = [(-0.5 * ncols * pixel_size[1], -0.5 * nrows * pixel_size[0]), (0.5 * ncols * pixel_size[1], 0.5 * nrows * pixel_size[0])]
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, bVec, eVec, omePeriod, simOnly=False, return_value_flag=return_value_flag): """ """ npts = len(xyo_det) refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool) print refineFlag # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit if dFunc is not None: dParams = pFull[-len(dFlag):] xys = dFunc(xyo_det[:, :2], dParams) else: xys = xyo_det[:, :2] # detector quantities wavelength = pFull[0] rMat_d = xf.makeDetectorRotMat(pFull[1:4]) tVec_d = pFull[4:7].reshape(3, 1) # sample quantities chi = pFull[7] tVec_s = pFull[8:11].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[11:14]) tVec_c = pFull[14:17].reshape(3, 1) # stretch tensor comp matrix from MV notation in SAMPLE frame vMat_s = mutil.vecMVToSymm(vInv) # g-vectors: # 1. calculate full g-vector components in CRYSTAL frame from B # 2. rotate into SAMPLE frame and apply stretch # 3. rotate back into CRYSTAL frame and normalize to unit magnitude # IDEA: make a function for this sequence of operations with option for # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB) gVec_c = np.dot(bMat, hkls_idx) gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s)) match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): raise RuntimeError("infeasible pFull: may want to scale" + "back finite difference step size") # return values if simOnly: # return simulated values retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: # return residual vector # IDEA: try angles instead of xys? diff_vecs_xy = calc_xy - xys[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten() if return_value_flag == 1: # return scalar sum of squared residuals retval = sum(abs(retval)) elif return_value_flag == 2: # return DOF-normalized chisq # TODO: check this calculation denom = npts - len(pFit) - 1. if denom != 0: nu_fac = 1. / denom else: nu_fac = 1. nu_fac = 1 / (npts - len(pFit) - 1.) retval = nu_fac * sum(retval**2) return retval
def make_reflection_patches( instr_cfg, tth_eta, ang_pixel_size, omega=None, tth_tol=0.2, eta_tol=1.0, rMat_c=np.eye(3), tVec_c=np.c_[0.0, 0.0, 0.0].T, distortion=distortion, npdiv=1, quiet=False, compute_areas_func=compute_areas, ): """ prototype function for making angular patches on a detector panel_dims are [(xmin, ymin), (xmax, ymax)] in mm pixel_pitch is [row_size, column_size] in mm DISTORTION HANDING IS STILL A KLUDGE patches are: delta tth d ------------- ... ------------- e | x | x | x | ... | x | x | x | l ------------- ... ------------- t . a . . e ------------- ... ------------- t | x | x | x | ... | x | x | x | a ------------- ... ------------- """ npts = len(tth_eta) # detector frame rMat_d = xfcapi.makeDetectorRotMat(instr_cfg["detector"]["transform"]["tilt_angles"]) tVec_d = np.r_[instr_cfg["detector"]["transform"]["t_vec_d"]] pixel_size = instr_cfg["detector"]["pixels"]["size"] frame_nrows = instr_cfg["detector"]["pixels"]["rows"] frame_ncols = instr_cfg["detector"]["pixels"]["columns"] panel_dims = ( -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], 0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], ) row_edges = np.arange(frame_nrows + 1)[::-1] * pixel_size[1] + panel_dims[0][1] col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0] # sample frame chi = instr_cfg["oscillation_stage"]["chi"] tVec_s = np.r_[instr_cfg["oscillation_stage"]["t_vec_s"]] # data to loop # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL? if omega is None: full_angs = np.hstack([tth_eta, np.zeros((npts, 1))]) else: full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)]) patches = [] for angs, pix in zip(full_angs, ang_pixel_size): # need to get angular pixel size rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0])) ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1])) tth_del = np.arange(0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol eta_del = np.arange(0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol # store dimensions for convenience # * etas and tths are bin vertices, ome is already centers sdims = [len(eta_del) - 1, len(tth_del) - 1] # meshgrid args are (cols, rows), a.k.a (fast, slow) m_tth, m_eta = np.meshgrid(tth_del, eta_del) npts_patch = m_tth.size # calculate the patch XY coords from the (tth, eta) angles # * will CHEAT and ignore the small perturbation the different # omega angle values causes and simply use the central value gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) + np.radians( np.vstack([m_tth.flatten(), m_eta.flatten(), np.zeros(npts_patch)]).T ) # will need this later rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) # FOR ANGULAR MESH conn = gutil.cellConnectivity(sdims[0], sdims[1], origin="ll") gVec_c = xf.anglesToGVec(gVec_angs_vtx, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval_vtx = distortion[0](xy_eval_vtx, distortion[1], invert=True) pass areas = compute_areas_func(xy_eval_vtx, conn) # EVALUATION POINTS # * for lack of a better option will use centroids tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]), conn) gVec_angs = np.hstack([tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))]) gVec_c = xf.anglesToGVec(gVec_angs, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval = distortion[0](xy_eval, distortion[1], invert=True) pass row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1]) col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0]) patches.append( ( (gVec_angs_vtx[:, 0].reshape(m_tth.shape), gVec_angs_vtx[:, 1].reshape(m_tth.shape)), (xy_eval_vtx[:, 0].reshape(m_tth.shape), xy_eval_vtx[:, 1].reshape(m_tth.shape)), conn, areas.reshape(sdims[0], sdims[1]), (row_indices.reshape(sdims[0], sdims[1]), col_indices.reshape(sdims[0], sdims[1])), ) ) pass return patches
def objFuncFitGrain(gFit, gFull, gFlag, detectorParams, xyo_det, hkls_idx, bMat, wavelength, bVec, eVec, dFunc, dParams, omePeriod, simOnly=False, returnScalarValue=returnScalarValue): """ gFull[0] = expMap_c[0] gFull[1] = expMap_c[1] gFull[2] = expMap_c[2] gFull[3] = tVec_c[0] gFull[4] = tVec_c[1] gFull[5] = tVec_c[2] gFull[6] = vInv_MV[0] gFull[7] = vInv_MV[1] gFull[8] = vInv_MV[2] gFull[9] = vInv_MV[3] gFull[10] = vInv_MV[4] gFull[11] = vInv_MV[5] detectorParams[0] = tiltAngles[0] detectorParams[1] = tiltAngles[1] detectorParams[2] = tiltAngles[2] detectorParams[3] = tVec_d[0] detectorParams[4] = tVec_d[1] detectorParams[5] = tVec_d[2] detectorParams[6] = chi detectorParams[7] = tVec_s[0] detectorParams[8] = tVec_s[1] detectorParams[9] = tVec_s[2] """ npts = len(xyo_det) gFull[gFlag] = gFit xy_unwarped = dFunc(xyo_det[:, :2], dParams) rMat_d = xfcapi.makeDetectorRotMat(detectorParams[:3]) tVec_d = detectorParams[3:6].reshape(3, 1) chi = detectorParams[6] tVec_s = detectorParams[7:10].reshape(3, 1) rMat_c = xfcapi.makeRotMatOfExpMap(gFull[:3]) tVec_c = gFull[3:6].reshape(3, 1) vInv_s = gFull[6:] vMat_s = mutil.vecMVToSymm(vInv_s) # NOTE: Inverse of V from F = V * R gVec_c = np.dot(bMat, hkls_idx) # gVecs with magnitudes in CRYSTAL frame gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) # stretched gVecs in SAMPLE frame gHat_c = mutil.unitVector(np.dot( rMat_c.T, gVec_s)) # unit reciprocal lattice vectors in CRYSTAL frame match_omes, calc_omes = matchOmegas(xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv_s, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): print "infeasible pFull" # return values if simOnly: retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: diff_vecs_xy = calc_xy - xy_unwarped[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1)]).flatten() if returnScalarValue: retval = sum(retval) return retval
pass ome_edges = np.arange(nframes+1)*ome_step #============================================================================== # %% INSTRUMENT #============================================================================== # load config instr_cfg = yaml.load(open('./retiga.yml', 'r')) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape(3, 1) chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1) rMat_d = makeDetectorRotMat(tiltAngles) rMat_s = makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] row_dim = pixel_size[0]*nrows # in mm col_dim = pixel_size[1]*ncols # in mm x_col_edges = pixel_size[1]*(np.arange(ncols+1) - 0.5*ncols) y_row_edges = pixel_size[0]*(np.arange(nrows+1) - 0.5*nrows)[::-1] panel_dims = [(-0.5*ncols*pixel_size[1], -0.5*nrows*pixel_size[0]), ( 0.5*ncols*pixel_size[1],
def mockup_experiment(): # user options # each grain is provided in the form of a quaternion. # The following array contains the quaternions for the array. Note that the # quaternions are in the columns, with the first row (row 0) being the real # part w. We assume that we are dealing with unit quaternions quats = np.array([[0.91836393, 0.90869942], [0.33952917, 0.1834835], [0.17216207, 0.10095837], [0.10811041, 0.36111851]]) n_grains = quats.shape[-1] # last dimension provides the number of grains phis = 2. * np.arccos( quats[0, :]) # phis are the angles for the quaternion ns = mutil.unitVector( quats[1:, :]) # ns contains the rotation axis as an unit vector exp_maps = np.array([phis[i] * ns[:, i] for i in range(n_grains)]) rMat_c = rot.rotMatOfQuat(quats) cvec = np.arange(-25, 26) X, Y, Z = np.meshgrid(cvec, cvec, cvec) crd0 = 1e-3 * np.vstack([X.flatten(), Y.flatten(), Z.flatten()]).T crd1 = crd0 + np.r_[0.100, 0.100, 0] crds = np.array([crd0, crd1]) # make grain parameters grain_params = [] for i in range(n_grains): for j in range(len(crd0)): grain_params.append( np.hstack( [exp_maps[i, :], crds[i][j, :], xf.vInv_ref.flatten()])) # scan range and period ome_period = (0, 2 * np.pi) ome_range = [ ome_period, ] ome_step = np.radians(1.) nframes = 0 for i in range(len(ome_range)): del_ome = ome_range[i][1] - ome_range[i][0] nframes += int((ome_range[i][1] - ome_range[i][0]) / ome_step) ome_edges = np.arange(nframes + 1) * ome_step # instrument with open('./retiga.yml', 'r') as fildes: instr_cfg = yaml.load(fildes) tiltAngles = instr_cfg['detector']['transform']['tilt_angles'] tVec_d = np.array(instr_cfg['detector']['transform']['t_vec_d']).reshape( 3, 1) chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.array(instr_cfg['oscillation_stage']['t_vec_s']).reshape(3, 1) rMat_d = xfcapi.makeDetectorRotMat(tiltAngles) rMat_s = xfcapi.makeOscillRotMat([chi, 0.]) pixel_size = instr_cfg['detector']['pixels']['size'] nrows = instr_cfg['detector']['pixels']['rows'] ncols = instr_cfg['detector']['pixels']['columns'] col_ps = pixel_size[1] row_ps = pixel_size[0] row_dim = row_ps * nrows # in mm col_dim = col_ps * ncols # in mm panel_dims = [(-0.5 * ncols * col_ps, -0.5 * nrows * row_ps), (0.5 * ncols * col_ps, 0.5 * nrows * row_ps)] x_col_edges = col_ps * (np.arange(ncols + 1) - 0.5 * ncols) y_row_edges = row_ps * (np.arange(nrows, -1, -1) - 0.5 * nrows) #x_col_edges = np.arange(panel_dims[0][0], panel_dims[1][0] + 0.5*col_ps, col_ps) #y_row_edges = np.arange(panel_dims[0][1], panel_dims[1][1] + 0.5*row_ps, row_ps) rx, ry = np.meshgrid(x_col_edges, y_row_edges) gcrds = xfcapi.detectorXYToGvec( np.vstack([rx.flatten(), ry.flatten()]).T, rMat_d, rMat_s, tVec_d, tVec_s, np.zeros(3)) max_pixel_tth = np.amax(gcrds[0][0]) detector_params = np.hstack( [tiltAngles, tVec_d.flatten(), chi, tVec_s.flatten()]) distortion = None # a different parametrization for the sensor (makes for faster quantization) base = np.array([x_col_edges[0], y_row_edges[0], ome_edges[0]]) deltas = np.array([ x_col_edges[1] - x_col_edges[0], y_row_edges[1] - y_row_edges[0], ome_edges[1] - ome_edges[0] ]) inv_deltas = 1.0 / deltas clip_vals = np.array([ncols, nrows]) # dilation max_diameter = np.sqrt(3) * 0.005 row_dilation = np.ceil(0.5 * max_diameter / row_ps) col_dilation = np.ceil(0.5 * max_diameter / col_ps) # crystallography data from hexrd import valunits gold = material.Material('gold') gold.sgnum = 225 gold.latticeParameters = [ 4.0782, ] gold.hklMax = 200 gold.beamEnergy = valunits.valWUnit("wavelength", "ENERGY", 52, "keV") gold.planeData.exclusions = None gold.planeData.tThMax = max_pixel_tth #note this comes from info in the detector ns = argparse.Namespace() # grains related information ns.n_grains = n_grains # this can be derived from other values... ns.rMat_c = rMat_c # n_grains rotation matrices (one per grain) ns.exp_maps = exp_maps # n_grains exp_maps -angle * rotation axis- (one per grain) ns.plane_data = gold.planeData ns.detector_params = detector_params ns.pixel_size = pixel_size ns.ome_range = ome_range ns.ome_period = ome_period ns.x_col_edges = x_col_edges ns.y_row_edges = y_row_edges ns.ome_edges = ome_edges ns.ncols = ncols ns.nrows = nrows ns.nframes = nframes # used only in simulate... ns.rMat_d = rMat_d ns.tVec_d = tVec_d ns.chi = chi # note this is used to compute S... why is it needed? ns.tVec_s = tVec_s # ns.rMat_s = rMat_s # ns.tVec_s = tVec_s ns.rMat_c = rMat_c ns.row_dilation = row_dilation ns.col_dilation = col_dilation ns.distortion = distortion ns.panel_dims = panel_dims # used only in simulate... ns.base = base ns.inv_deltas = inv_deltas ns.clip_vals = clip_vals return grain_params, ns
epsf = 2.2e-16 vec = np.array([[random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi),random.uniform(-np.pi,np.pi)]]) vHat1 = xf.unitVector(vec.T) vHat2 = xfcapi.unitRowVector(vec) print "unitVector results match: ",np.linalg.norm(vHat1.T-vHat2)/np.linalg.norm(vHat1) < epsf tAng = np.array([0.0011546340766314521,-0.0040527538387122993,-0.0026221336905160211]) rMat1 = xf.makeDetectorRotMat(tAng) rMat2 = xfcapi.makeDetectorRotMat(tAng) print "makeDetectorRotMat results match: ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf oAng = np.array([-0.0011591608938627839,0.0011546340766314521]) rMat1 = xf.makeOscillRotMat(oAng) rMat2 = xfcapi.makeOscillRotMat(oAng) print "makeOscillRotMat results match: ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf eMap = np.array([ 0.66931818,-0.98578066,0.73593251]) rMat1 = xf.makeRotMatOfExpMap(eMap) rMat2 = xfcapi.makeRotMatOfExpMap(eMap) print "makeRotMatOfExpMap results match: ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf axis = np.array([ 0.66931818,-0.98578066,0.73593251]) rMat1 = xf.makeBinaryRotMat(axis) rMat2 = xfcapi.makeBinaryRotMat(axis) print "makeBinaryRotMat results match: ",np.linalg.norm(rMat1-rMat2)/np.linalg.norm(rMat1) < epsf bHat = np.array([0.0,0.0,-1.0]) eta = np.array([1.0,0.0,0.0]) rMat1 = xf.makeEtaFrameRotMat(bHat,eta)
def objFuncSX(pFit, pFull, pFlag, dFunc, dFlag, xyo_det, hkls_idx, bMat, vInv, bVec, eVec, omePeriod, simOnly=False, return_value_flag=return_value_flag): """ """ npts = len(xyo_det) refineFlag = np.array(np.hstack([pFlag, dFlag]), dtype=bool) print refineFlag # pFull[refineFlag] = pFit/scl[refineFlag] pFull[refineFlag] = pFit if dFunc is not None: dParams = pFull[-len(dFlag):] xys = dFunc(xyo_det[:, :2], dParams) else: xys = xyo_det[:, :2] # detector quantities wavelength = pFull[0] rMat_d = xf.makeDetectorRotMat(pFull[1:4]) tVec_d = pFull[4:7].reshape(3, 1) # sample quantities chi = pFull[7] tVec_s = pFull[8:11].reshape(3, 1) # crystal quantities rMat_c = xf.makeRotMatOfExpMap(pFull[11:14]) tVec_c = pFull[14:17].reshape(3, 1) # stretch tensor comp matrix from MV notation in SAMPLE frame vMat_s = mutil.vecMVToSymm(vInv) # g-vectors: # 1. calculate full g-vector components in CRYSTAL frame from B # 2. rotate into SAMPLE frame and apply stretch # 3. rotate back into CRYSTAL frame and normalize to unit magnitude # IDEA: make a function for this sequence of operations with option for # choosing ouput frame (i.e. CRYSTAL vs SAMPLE vs LAB) gVec_c = np.dot(bMat, hkls_idx) gVec_s = np.dot(vMat_s, np.dot(rMat_c, gVec_c)) gHat_c = mutil.unitVector(np.dot(rMat_c.T, gVec_s)) match_omes, calc_omes = matchOmegas( xyo_det, hkls_idx, chi, rMat_c, bMat, wavelength, vInv=vInv, beamVec=bVec, etaVec=eVec, omePeriod=omePeriod) calc_xy = np.zeros((npts, 2)) for i in range(npts): rMat_s = xfcapi.makeOscillRotMat([chi, calc_omes[i]]) calc_xy[i, :] = xfcapi.gvecToDetectorXY(gHat_c[:, i], rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c, beamVec=bVec).flatten() pass if np.any(np.isnan(calc_xy)): raise RuntimeError( "infeasible pFull: may want to scale" + "back finite difference step size") # return values if simOnly: # return simulated values retval = np.hstack([calc_xy, calc_omes.reshape(npts, 1)]) else: # return residual vector # IDEA: try angles instead of xys? diff_vecs_xy = calc_xy - xys[:, :2] diff_ome = xf.angularDifference(calc_omes, xyo_det[:, 2]) retval = np.hstack([diff_vecs_xy, diff_ome.reshape(npts, 1) ]).flatten() if return_value_flag == 1: # return scalar sum of squared residuals retval = sum(abs(retval)) elif return_value_flag == 2: # return DOF-normalized chisq # TODO: check this calculation denom = npts - len(pFit) - 1. if denom != 0: nu_fac = 1. / denom else: nu_fac = 1. nu_fac = 1 / (npts - len(pFit) - 1.) retval = nu_fac * sum(retval**2) return retval
def make_reflection_patches(instr_cfg, tth_eta, ang_pixel_size, omega=None, tth_tol=0.2, eta_tol=1.0, rMat_c=np.eye(3), tVec_c=np.c_[0., 0., 0.].T, distortion=distortion, npdiv=1, quiet=False, compute_areas_func=compute_areas): """ prototype function for making angular patches on a detector panel_dims are [(xmin, ymin), (xmax, ymax)] in mm pixel_pitch is [row_size, column_size] in mm DISTORTION HANDING IS STILL A KLUDGE patches are: delta tth d ------------- ... ------------- e | x | x | x | ... | x | x | x | l ------------- ... ------------- t . a . . e ------------- ... ------------- t | x | x | x | ... | x | x | x | a ------------- ... ------------- """ npts = len(tth_eta) # detector frame rMat_d = xfcapi.makeDetectorRotMat( instr_cfg['detector']['transform']['tilt_angles']) tVec_d = np.r_[instr_cfg['detector']['transform']['t_vec_d']] pixel_size = instr_cfg['detector']['pixels']['size'] frame_nrows = instr_cfg['detector']['pixels']['rows'] frame_ncols = instr_cfg['detector']['pixels']['columns'] panel_dims = ( -0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]], 0.5 * np.r_[frame_ncols * pixel_size[1], frame_nrows * pixel_size[0]]) row_edges = np.arange(frame_nrows + 1)[::-1] * pixel_size[1] + panel_dims[0][1] col_edges = np.arange(frame_ncols + 1) * pixel_size[0] + panel_dims[0][0] # sample frame chi = instr_cfg['oscillation_stage']['chi'] tVec_s = np.r_[instr_cfg['oscillation_stage']['t_vec_s']] # data to loop # ...WOULD IT BE CHEAPER TO CARRY ZEROS OR USE CONDITIONAL? if omega is None: full_angs = np.hstack([tth_eta, np.zeros((npts, 1))]) else: full_angs = np.hstack([tth_eta, omega.reshape(npts, 1)]) patches = [] for angs, pix in zip(full_angs, ang_pixel_size): # need to get angular pixel size rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) ndiv_tth = npdiv * np.ceil(tth_tol / np.degrees(pix[0])) ndiv_eta = npdiv * np.ceil(eta_tol / np.degrees(pix[1])) tth_del = np.arange( 0, ndiv_tth + 1) * tth_tol / float(ndiv_tth) - 0.5 * tth_tol eta_del = np.arange( 0, ndiv_eta + 1) * eta_tol / float(ndiv_eta) - 0.5 * eta_tol # store dimensions for convenience # * etas and tths are bin vertices, ome is already centers sdims = [len(eta_del) - 1, len(tth_del) - 1] # meshgrid args are (cols, rows), a.k.a (fast, slow) m_tth, m_eta = np.meshgrid(tth_del, eta_del) npts_patch = m_tth.size # calculate the patch XY coords from the (tth, eta) angles # * will CHEAT and ignore the small perturbation the different # omega angle values causes and simply use the central value gVec_angs_vtx = np.tile(angs, (npts_patch, 1)) \ + np.radians( np.vstack([m_tth.flatten(), m_eta.flatten(), np.zeros(npts_patch) ]).T ) # will need this later rMat_s = xfcapi.makeOscillRotMat([chi, angs[2]]) # FOR ANGULAR MESH conn = gutil.cellConnectivity(sdims[0], sdims[1], origin='ll') gVec_c = xf.anglesToGVec(gVec_angs_vtx, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval_vtx = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval_vtx = distortion[0](xy_eval_vtx, distortion[1], invert=True) pass areas = compute_areas_func(xy_eval_vtx, conn) # EVALUATION POINTS # * for lack of a better option will use centroids tth_eta_cen = gutil.cellCentroids(np.atleast_2d(gVec_angs_vtx[:, :2]), conn) gVec_angs = np.hstack( [tth_eta_cen, np.tile(angs[2], (len(tth_eta_cen), 1))]) gVec_c = xf.anglesToGVec(gVec_angs, xf.bVec_ref, xf.eta_ref, rMat_s=rMat_s, rMat_c=rMat_c) xy_eval = xfcapi.gvecToDetectorXY(gVec_c.T, rMat_d, rMat_s, rMat_c, tVec_d, tVec_s, tVec_c) if distortion is not None and len(distortion) == 2: xy_eval = distortion[0](xy_eval, distortion[1], invert=True) pass row_indices = gutil.cellIndices(row_edges, xy_eval[:, 1]) col_indices = gutil.cellIndices(col_edges, xy_eval[:, 0]) patches.append( ((gVec_angs_vtx[:, 0].reshape(m_tth.shape), gVec_angs_vtx[:, 1].reshape(m_tth.shape)), (xy_eval_vtx[:, 0].reshape(m_tth.shape), xy_eval_vtx[:, 1].reshape(m_tth.shape)), conn, areas.reshape(sdims[0], sdims[1]), (row_indices.reshape(sdims[0], sdims[1]), col_indices.reshape(sdims[0], sdims[1])))) pass return patches
def pull_spots(self, plane_data, grain_params, imgser_dict, tth_tol=0.25, eta_tol=1., ome_tol=1., npdiv=2, threshold=10, eta_ranges=[(-np.pi, np.pi), ], ome_period=(-np.pi, np.pi), dirname='results', filename=None, output_format='text', save_spot_list=False, quiet=True, check_only=False, interp='nearest'): """ Exctract reflection info from a rotation series encoded as an OmegaImageseries object """ # grain parameters rMat_c = makeRotMatOfExpMap(grain_params[:3]) tVec_c = grain_params[3:6] # grab omega ranges from first imageseries # # WARNING: all imageseries AND all wedges within are assumed to have # the same omega values; put in a check that they are all the same??? oims0 = imgser_dict[imgser_dict.keys()[0]] ome_ranges = [np.radians([i['ostart'], i['ostop']]) for i in oims0.omegawedges.wedges] # delta omega in DEGREES grabbed from first imageseries in the dict delta_ome = oims0.omega[0, 1] - oims0.omega[0, 0] # make omega grid for frame expansion around reference frame # in DEGREES ndiv_ome, ome_del = make_tolerance_grid( delta_ome, ome_tol, 1, adjust_window=True, ) # generate structuring element for connected component labeling if ndiv_ome == 1: label_struct = ndimage.generate_binary_structure(2, 2) else: label_struct = ndimage.generate_binary_structure(3, 3) # simulate rotation series sim_results = self.simulate_rotation_series( plane_data, [grain_params, ], eta_ranges=eta_ranges, ome_ranges=ome_ranges, ome_period=ome_period) # patch vertex generator (global for instrument) tol_vec = 0.5*np.radians( [-tth_tol, -eta_tol, -tth_tol, eta_tol, tth_tol, eta_tol, tth_tol, -eta_tol]) # prepare output if requested if filename is not None and output_format.lower() == 'hdf5': this_filename = os.path.join(dirname, filename) writer = io.GrainDataWriter_h5( os.path.join(dirname, filename), self.write_config(), grain_params) # ===================================================================== # LOOP OVER PANELS # ===================================================================== iRefl = 0 compl = [] output = dict.fromkeys(self.detectors) for detector_id in self.detectors: # initialize text-based output writer if filename is not None and output_format.lower() == 'text': output_dir = os.path.join( dirname, detector_id ) if not os.path.exists(output_dir): os.makedirs(output_dir) this_filename = os.path.join( output_dir, filename ) writer = io.PatchDataWriter(this_filename) # grab panel panel = self.detectors[detector_id] instr_cfg = panel.config_dict(self.chi, self.tvec) native_area = panel.pixel_area # pixel ref area # pull out the OmegaImageSeries for this panel from input dict ome_imgser = imgser_dict[detector_id] # extract simulation results sim_results_p = sim_results[detector_id] hkl_ids = sim_results_p[0][0] hkls_p = sim_results_p[1][0] ang_centers = sim_results_p[2][0] xy_centers = sim_results_p[3][0] ang_pixel_size = sim_results_p[4][0] # now verify that full patch falls on detector... # ???: strictly necessary? # # patch vertex array from sim nangs = len(ang_centers) patch_vertices = ( np.tile(ang_centers[:, :2], (1, 4)) + np.tile(tol_vec, (nangs, 1)) ).reshape(4*nangs, 2) ome_dupl = np.tile( ang_centers[:, 2], (4, 1) ).T.reshape(len(patch_vertices), 1) # find vertices that all fall on the panel det_xy, _ = xrdutil._project_on_detector_plane( np.hstack([patch_vertices, ome_dupl]), panel.rmat, rMat_c, self.chi, panel.tvec, tVec_c, self.tvec, panel.distortion) _, on_panel = panel.clip_to_panel(det_xy, buffer_edges=True) # all vertices must be on... patch_is_on = np.all(on_panel.reshape(nangs, 4), axis=1) patch_xys = det_xy.reshape(nangs, 4, 2)[patch_is_on] # re-filter... hkl_ids = hkl_ids[patch_is_on] hkls_p = hkls_p[patch_is_on, :] ang_centers = ang_centers[patch_is_on, :] xy_centers = xy_centers[patch_is_on, :] ang_pixel_size = ang_pixel_size[patch_is_on, :] # TODO: add polygon testing right here! # done <JVB 06/21/16> if check_only: patch_output = [] for i_pt, angs in enumerate(ang_centers): # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(angs[2]) + ome_del # ...vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkls_p[i_pt, :]) print(msg) continue else: these_vertices = patch_xys[i_pt] ijs = panel.cartToPixel(these_vertices) ii, jj = polygon(ijs[:, 0], ijs[:, 1]) contains_signal = False for i_frame in frame_indices: contains_signal = contains_signal or np.any( ome_imgser[i_frame][ii, jj] > threshold ) compl.append(contains_signal) patch_output.append((ii, jj, frame_indices)) else: # make the tth,eta patches for interpolation patches = xrdutil.make_reflection_patches( instr_cfg, ang_centers[:, :2], ang_pixel_size, omega=ang_centers[:, 2], tth_tol=tth_tol, eta_tol=eta_tol, rMat_c=rMat_c, tVec_c=tVec_c, distortion=panel.distortion, npdiv=npdiv, quiet=True, beamVec=self.beam_vector) # GRAND LOOP over reflections for this panel patch_output = [] for i_pt, patch in enumerate(patches): # strip relevant objects out of current patch vtx_angs, vtx_xy, conn, areas, xy_eval, ijs = patch prows, pcols = areas.shape nrm_fac = areas/float(native_area) nrm_fac = nrm_fac / np.min(nrm_fac) # grab hkl info hkl = hkls_p[i_pt, :] hkl_id = hkl_ids[i_pt] # edge arrays tth_edges = vtx_angs[0][0, :] delta_tth = tth_edges[1] - tth_edges[0] eta_edges = vtx_angs[1][:, 0] delta_eta = eta_edges[1] - eta_edges[0] # need to reshape eval pts for interpolation xy_eval = np.vstack([xy_eval[0].flatten(), xy_eval[1].flatten()]).T # the evaluation omegas; # expand about the central value using tol vector ome_eval = np.degrees(ang_centers[i_pt, 2]) + ome_del # ???: vectorize the omega_to_frame function to avoid loop? frame_indices = [ ome_imgser.omega_to_frame(ome)[0] for ome in ome_eval ] if -1 in frame_indices: if not quiet: msg = """ window for (%d%d%d) falls outside omega range """ % tuple(hkl) print(msg) continue else: # initialize spot data parameters # !!! maybe change these to nan to not f**k up writer peak_id = -999 sum_int = None max_int = None meas_angs = None meas_xy = None # quick check for intensity contains_signal = False patch_data_raw = [] for i_frame in frame_indices: tmp = ome_imgser[i_frame][ijs[0], ijs[1]] contains_signal = contains_signal or np.any( tmp > threshold ) patch_data_raw.append(tmp) pass patch_data_raw = np.stack(patch_data_raw, axis=0) compl.append(contains_signal) if contains_signal: # initialize patch data array for intensities if interp.lower() == 'bilinear': patch_data = np.zeros( (len(frame_indices), prows, pcols)) for i, i_frame in enumerate(frame_indices): patch_data[i] = \ panel.interpolate_bilinear( xy_eval, ome_imgser[i_frame], pad_with_nans=False ).reshape(prows, pcols) # * nrm_fac elif interp.lower() == 'nearest': patch_data = patch_data_raw # * nrm_fac else: msg = "interpolation option " + \ "'%s' not understood" raise(RuntimeError, msg % interp) # now have interpolated patch data... labels, num_peaks = ndimage.label( patch_data > threshold, structure=label_struct ) slabels = np.arange(1, num_peaks + 1) if num_peaks > 0: peak_id = iRefl coms = np.array( ndimage.center_of_mass( patch_data, labels=labels, index=slabels ) ) if num_peaks > 1: center = np.r_[patch_data.shape]*0.5 center_t = np.tile(center, (num_peaks, 1)) com_diff = coms - center_t closest_peak_idx = np.argmin( np.sum(com_diff**2, axis=1) ) else: closest_peak_idx = 0 pass # end multipeak conditional coms = coms[closest_peak_idx] # meas_omes = \ # ome_edges[0] + (0.5 + coms[0])*delta_ome meas_omes = \ ome_eval[0] + coms[0]*delta_ome meas_angs = np.hstack( [tth_edges[0] + (0.5 + coms[2])*delta_tth, eta_edges[0] + (0.5 + coms[1])*delta_eta, mapAngle( np.radians(meas_omes), ome_period ) ] ) # intensities # - summed is 'integrated' over interpolated # data # - max is max of raw input data sum_int = np.sum( patch_data[ labels == slabels[closest_peak_idx] ] ) max_int = np.max( patch_data_raw[ labels == slabels[closest_peak_idx] ] ) # ???: Should this only use labeled pixels? # Those are segmented from interpolated data, # not raw; likely ok in most cases. # need MEASURED xy coords gvec_c = anglesToGVec( meas_angs, chi=self.chi, rMat_c=rMat_c, bHat_l=self.beam_vector) rMat_s = makeOscillRotMat( [self.chi, meas_angs[2]] ) meas_xy = gvecToDetectorXY( gvec_c, panel.rmat, rMat_s, rMat_c, panel.tvec, self.tvec, tVec_c, beamVec=self.beam_vector) if panel.distortion is not None: # FIXME: distortion handling meas_xy = panel.distortion[0]( np.atleast_2d(meas_xy), panel.distortion[1], invert=True).flatten() pass # FIXME: why is this suddenly necessary??? meas_xy = meas_xy.squeeze() pass # end num_peaks > 0 else: patch_data = patch_data_raw pass # end contains_signal # write output if filename is not None: if output_format.lower() == 'text': writer.dump_patch( peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, xy_centers[i_pt], meas_xy) elif output_format.lower() == 'hdf5': xyc_arr = xy_eval.reshape( prows, pcols, 2 ).transpose(2, 0, 1) writer.dump_patch( detector_id, iRefl, peak_id, hkl_id, hkl, tth_edges, eta_edges, np.radians(ome_eval), xyc_arr, ijs, frame_indices, patch_data, ang_centers[i_pt], xy_centers[i_pt], meas_angs, meas_xy) pass # end conditional on write output pass # end conditional on check only patch_output.append([ peak_id, hkl_id, hkl, sum_int, max_int, ang_centers[i_pt], meas_angs, meas_xy, ]) iRefl += 1 pass # end patch conditional pass # end patch loop output[detector_id] = patch_output if filename is not None and output_format.lower() == 'text': writer.close() pass # end detector loop if filename is not None and output_format.lower() == 'hdf5': writer.close() return compl, output