예제 #1
0
def compareChart(currentWeek, students, names, averageRank):
    if not os.path.exists(chart_folder):
        os.makedirs(chart_folder)
    raw_options['chart']['height'] = 800
    options = copy.deepcopy(raw_options)
    options['title']['text'] = 'Normalized Rank Comparison Chart'
    options['yAxis']['title']['text'] = 'Normalized Rank'
    options['xAxis']['title']['text'] = 'Week'
    chart = Highchart()
    chart.set_dict_options(options)
    series = []
    
    for student in students:
        if not student.is_active:
            continue
        name = names[student.user_name]
        data = []
        for week in range(1, currentWeek + 1):
            rank = averageRank[week-1].get(student.user_name)
            if rank is not None:
                point = [week, rank]
                data.append(point)
        series.append({'name': name, 'data': data})
        chart.add_data_set(data, 'spline', name, marker={'enabled': True})
    #options['series'] = series
    chart.save_file(chart_folder + 'compare')
예제 #2
0
def save_map():
    chart = Highchart()

    chart.set_options('chart', {'inverted': True})

    options = {
        'title': {
            'text': 'LoadBoy 接口负载图'
        },
        'subtitle': {
            'text': '响应时间/吞吐量/线程数'
        },
        'xAxis': {
            'reversed': False,
            'title': {
                'enabled': True,
                'text': '响应时间'
            },
            'labels': {
                'formatter':
                'function () {\
                    return this.value + " t/s";\
                }'
            },
            'maxPadding': 0.05,
            'showLastLabel': True
        },
        'yAxis': {
            'title': {
                'text': '线程数'
            },
            'labels': {
                'formatter':
                "function () {\
                    return this.value + '';\
                }"
            },
            'lineWidth': 2
        },
        'legend': {
            'enabled': False
        },
        'tooltip': {
            'headerFormat': '<b>{series.name}</b><br/>',
            'pointFormat': ''
        }
    }

    chart.set_dict_options(options)

    global rt2
    global tps
    global t_num
    tps_data = list(zip(tps, t_num))
    chart.add_data_set(tps_data, 'spline', 'tps', marker={'enabled': False})

    rt_data = list(zip(rt2, t_num))
    chart.add_data_set(rt_data, 'line', 'rt', marker={'enabled': False})

    chart.save_file()
def create_line_chart(categories, values, title, filename, charttype,
                      orientation, axisreverse, stack):
    chart = Highchart()
    options = {
        'chart': {
            'type': charttype
        },
        'title': {
            'text': title
        },
        'xAxis': {
            'categories': categories,
            'labels': {
                'rotation': 45
            }
        },
        'yAxis': {
            'title': {
                'text': '#Cases'
            },
            'stackLabels': {
                'enabled': False,
                'verticalAlign': 'top',
                'y': 100
            }
        },
        'plotOptions': {
            'series': {
                'dataLabels': {
                    'enabled': True
                },
                'stacking': 'normal'
            }
        },
        'legend': {
            'enabled': True
        },
        'tooltip': {
            'enabled':
            True,
            'shared':
            True,
            'formatter':
            "function(){ var s = '<b>'+ this.x +'</b>'; var s1=''; var sum = 0; $.each(this.points, function(i, point) { s1 += '<br/><b>'+ point.series.name +'</b>: '+ point.y ; sum += point.y; }); s += '<br/><b>Total</b>: '+sum ; return s+s1;}"
        }
    }

    chart.set_dict_options(options)
    print(options)
    colors = ['#1A5276', '#6E2C00', '#2C3E50', '#45B39D']
    keys = list(values.keys())
    for series in keys:
        data = values[series]
        chart.add_data_set(data,
                           charttype,
                           series,
                           marker={'enabled': True},
                           color=colors[keys.index(series)])
    print(filename)
    chart.save_file(filename)
예제 #4
0
def generateCharts(currentWeek, students, names, averageRank, averageToken):
    if not os.path.exists(chart_folder):
        os.makedirs(chart_folder)
    raw_options['chart']['height'] = 500    
    options = copy.deepcopy(raw_options)
    options['yAxis'] = [{
        'min' : -1,
        'max' : 1,
        'reversed': True,
            'title': {
                'text': 'Normalized Rank'
            },
            'labels': {
                'formatter': "function () {\
                    return this.value;\
                }"
            },
            'lineWidth': 2
    },
    {
            'reversed': True,
            'title': {
                'text': 'Normalized Token'
            },
            'labels': {
                'formatter': "function () {\
                    return this.value;\
                }"
            },
            'lineWidth': 2,
            'opposite': True
    },
    ]
    options['xAxis']['title']['text'] = 'Week'
    for student in students:
        if not student.is_active:
            continue
        chart = Highchart()
        options['title']['text'] = names[student.user_name]
        options['chart']['renderTo'] = 'container_' + student.user_name
        chart.set_dict_options(options)    
        rank_data = []
        token_data = []
        for week in range(1, currentWeek + 1):
            rank = averageRank[week-1].get(student.user_name)
            token = averageToken[week-1].get(student.user_name)
            if rank is not None and token is not None:
                point = [week, rank]
                rank_data.append(point)
                point = [week, token]
                token_data.append(point)
        chart.add_data_set(rank_data, 'spline', 'Normalized Rank', marker={'enabled': True})
        chart.add_data_set(token_data, 'spline', 'Normalized Token', marker={'enabled': True}, yAxis=1)
        chart.save_file(chart_folder + student.user_name)
예제 #5
0
    },

   'xAxis': {
        'categories': ['User 1', 'User 2', 'User 3', 'User 4', 'User 5'],
        },

    'yAxis': {
        'title': {
            'text': 'Number of posts (thousands)'
        }  
    },

}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

var allProductsArray = db.restaurants.find().toArray();


data1 = [1070, 301, 6035, 2003, 200]
data2 = [1330, 0156, 9047, 4008, 600]
data3 = [9703, 9140, 40504, 7302, 340]
data4 = [105002, 9504, 40250, 7040, 308]

chart.set_dict_options(options)

chart.add_data_set(data1, 'bar', 'Day 1')
chart.add_data_set(data2, 'bar', 'Day 2')
chart.add_data_set(data3, 'bar', 'Day 3')
chart.add_data_set(data4, 'bar', 'Day 4')

chart.save_file('./highcharts-bar')
        'enabled': True
    },
    'xAxis': {
        'title': {
            'text': 'Followers (thousands)'
        }
    },
    'yAxis': {
        'title': {
            'text': 'Friends (thousands)'
        }
    },
}

data1 = [[161, 51], [167, 59], [159, 49], [157, 63], [155, 53]]

data2 = [[174, 165], [175, 171], [193, 180], [186, 172], [187, 178]]

chart.set_dict_options(options)

chart.add_data_set(data1,
                   'scatter',
                   'Celebrity accounts',
                   color='rgba(223, 83, 83,0.5)')
chart.add_data_set(data2,
                   'scatter',
                   'Normal user accounts',
                   color='rgba(119, 152, 191,0.5)')

chart.save_file('./highcharts-scatter')
예제 #7
0
from highcharts import Highchart

chart = Highchart()
options = {
'chart': {
	'type':'bar'},
'title':{
	'text':'Top 10 Hashtags'},
'xAxis':{
	'categories':['1','2','3','4','5','6','7','8','9','10']},
'yAxis':{
	'title':{
		'text':'Number of times mentioned'}
	},
}

data1 #This is an array. make size 10. first means first graoh

chart.set_dict_options(options)

chart.add_data_set(data1, 'bar', 'Count')

chart.save_file('./bar-highcharts')

예제 #8
0
                    'text': 'Observed in Kansas City, Kansas, USA'
                },
                'plotOptions': {
                    'pie': {
                        'innerSize': 100,
                        'depth': 45
                    }
                }
            }

            chart.set_dict_options(options)

            data = plot
            chart.add_data_set(data, 'pie', 'Count')

            chart.save_file("hashtags")

        elif query == 2:
            data = q.KCtweets()
            if data is None:
                print("Sorry, No Results Are Found!")
            else:
                table = PrettyTable()
                table.field_names = [
                    "Tweet Id ", "Place", "Create at", "Favorites", "Content"
                ]
                for row in data:
                    t_id = row[0]
                    place = row[1]
                    created_at = row[2]
                    fav = row[3]
def create_chart(categories, values, title, filename, charttype, orientation,
                 axisreverse, stack):
    chart = Highchart()
    options = {
        'chart': {
            'type': charttype
        },
        'title': {
            'text': title
        },
        'xAxis': {
            'reversed': axisreverse,
            'categories': categories,
            'maxPadding': 0.05,
            'showLastLabel': True
        },
        'yAxis': {
            'title': {
                'text': '#Cases'
            },
            'stackLabels': {
                'enabled': stack,
                'style': {
                    'color': 'black'
                }
            },
            'lineWidth': 2
        },
        'plotOptions': {
            'series': {
                'dataLabels': {
                    'enabled': True,
                    'style': {
                        'fontWeight': 'bold',
                        'color': 'gray'
                    }
                },
                'stacking': 'normal'
            }
        },
        'legend': {
            'enabled': True
        },
        'tooltip': {
            'shared': True,
            'enabled': True
        }
    }

    chart.set_dict_options(options)
    print(options)
    colors = ['#1A5276', '#6E2C00', '#2C3E50']
    keys = list(values.keys())
    for series in keys:
        data = values[series]
        chart.add_data_set(data,
                           charttype,
                           series,
                           marker={'enabled': True},
                           color=colors[keys.index(series)])
    print(filename)
    chart.save_file(filename)
예제 #10
0
def plot_grid(molmap, htmlpath='./', htmlname=None):
    '''
    molmap: the object of molmap
    htmlpath: the figure path
    '''

    if not os.path.exists(htmlpath):
        os.makedirs(htmlpath)

    title = 'Assignment of %s by %s emmbedding result' % (molmap.ftype,
                                                          molmap.method)
    subtitle = 'number of %s: %s, metric method: %s' % (
        molmap.ftype, len(molmap.flist), molmap.metric)

    name = '%s_%s_%s_%s_%s' % (molmap.ftype, len(
        molmap.flist), molmap.metric, molmap.method, 'molmap')

    if htmlname:
        name = name = htmlname + '_' + name

    filename = os.path.join(htmlpath, name)
    print_info('generate file: %s' % filename)

    m, n = molmap.fmap_shape
    colormaps = molmap.extract.colormaps
    position = np.zeros(molmap.fmap_shape, dtype='O').reshape(m * n, )
    position[molmap._S.col_asses] = molmap.flist
    position = position.reshape(m, n)

    x = []
    for i in range(n):
        x.extend([i] * m)

    y = list(range(m)) * n

    v = position.reshape(m * n, order='f')

    df = pd.DataFrame(list(zip(x, y, v)), columns=['x', 'y', 'v'])
    bitsinfo = molmap.extract.bitsinfo
    subtypedict = bitsinfo.set_index('IDs')['Subtypes'].to_dict()
    subtypedict.update({0: 'NaN'})
    df['Subtypes'] = df.v.map(subtypedict)
    df['colors'] = df['Subtypes'].map(colormaps)

    H = Highchart(width=1000, height=850)
    H.set_options('chart', {'type': 'heatmap', 'zoomType': 'xy'})
    H.set_options('title', {'text': title})
    H.set_options('subtitle', {'text': subtitle})

    #     H.set_options('xAxis', {'title': '',
    #                             'min': 0, 'max': molmap.fmap_shape[1]-1,
    #                             'allowDecimals':False,
    #                             'labels':{'style':{'fontSize':20}}})

    #     H.set_options('yAxis', {'title': '', 'tickPosition': 'inside',
    #                             'min': 0, 'max': molmap.fmap_shape[0]-1,
    #                             'reversed': True,
    #                             'allowDecimals':False,
    #                             'labels':{'style':{'fontSize':20}}})

    H.set_options(
        'xAxis', {
            'title': None,
            'min': 0,
            'max': molmap.fmap_shape[1],
            'startOnTick': False,
            'endOnTick': False,
            'allowDecimals': False,
            'labels': {
                'style': {
                    'fontSize': 20
                }
            }
        })

    H.set_options(
        'yAxis', {
            'title': {
                'text': ' ',
                'style': {
                    'fontSize': 20
                }
            },
            'startOnTick': False,
            'endOnTick': False,
            'gridLineWidth': 0,
            'reversed': True,
            'min': 0,
            'max': molmap.fmap_shape[0],
            'allowDecimals': False,
            'labels': {
                'style': {
                    'fontSize': 20
                }
            }
        })

    H.set_options(
        'legend', {
            'align': 'right',
            'layout': 'vertical',
            'margin': 1,
            'verticalAlign': 'top',
            'y': 60,
            'symbolHeight': 12,
            'floating': False,
        })

    H.set_options('tooltip', {
        'headerFormat': '<b>{series.name}</b><br>',
        'pointFormat': '{point.v}'
    })

    H.set_options('plotOptions', {'series': {'turboThreshold': 5000}})

    for subtype, color in colormaps.items():
        dfi = df[df['Subtypes'] == subtype]
        if len(dfi) == 0:
            continue
        H.add_data_set(
            dfi.to_dict('records'),
            'heatmap',
            name=subtype,
            color=color,  #dataLabels = {'enabled': True, 'color': '#000000'}
        )
    H.save_file(filename)
    print_info('save html file to %s' % filename)

    return df, H
def highchart_analyser(df, period='M', name=""):

    charts = Highchart()
    # create highcharts instance

    # remove time field from either of the headers lists
    options = {
        'chart': {
            'zoomType': 'x'
        },
        'title': {
            'text': 'Shryne User/Contact Statistics at Resolution: ' + period
        },
        'xAxis': {
            'type': 'datetime',
            'crosshair': True
        },
        'credits': {
            'enabled': False
        },
        'yAxis': [{
            'gridLineWidth': 0,
            'title': {
                'text': 'Messages (% of total)',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            },
            'labels': {
                'format': '{value}',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            }
        }, {
            'gridLineWidth': 0,
            'title': {
                'text': 'Sentiment',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            },
            'labels': {
                'format': '{value}',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            },
            'opposite': True
        }, {
            'gridLineWidth': 0,
            'title': {
                'text': 'Response Time',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            },
            'labels': {
                'format': '{value}',
                'style': {
                    'color': 'Highcharts.getOptions().colors[1]'
                }
            },
            'opposite': True
        }, {
            'reversed': True,
            'gridLineWidth': 0,
            'title': {
                'enabled': False
            },
            'labels': {
                'enabled': False
            },
            'opposite': True
        }],
        'tooltip': {
            'shared': True,
        },
        'legend': {
            'layout':
            'vertical',
            'align':
            'left',
            'x':
            80,
            'verticalAlign':
            'top',
            'y':
            55,
            'floating':
            False,
            'backgroundColor':
            "(Highcharts.theme && Highcharts.theme.legendBackgroundColor) || '#FFFFFF'"
        }
    }
    x = df.index.values.tolist()
    x = [int(i) / 1000000 for i in x]

    time_vs_counts = list(zip(x, df["message_count"]))
    time_vs_pos_sent = list(zip(x, df["compound"]))
    time_vs_word_length = list(zip(x, df["response_time"]))

    time_vs_message_reciprocity = list(zip(x, df["message_count_reciprocity"]))
    time_vs_word_length_reciprocity = list(zip(x, df["probs"]))

    charts.set_dict_options(options)

    charts.add_data_set(time_vs_counts,
                        series_type='spline',
                        yAxis=0,
                        name="Message Count",
                        color='rgba(0,191,255, 1)')

    charts.add_data_set(time_vs_pos_sent,
                        'column',
                        name="sentiment",
                        yAxis=2,
                        stack='sentiment',
                        color='brown')

    charts.add_data_set(time_vs_word_length,
                        series_type='spline',
                        yAxis=2,
                        name="Response time",
                        color='rgba(186,85,211, 1)')

    charts.add_data_set(time_vs_message_reciprocity,
                        series_type='spline',
                        yAxis=1,
                        name="Message Count reciprocity",
                        color='red')
    charts.add_data_set(time_vs_word_length_reciprocity,
                        series_type='spline',
                        yAxis=1,
                        name="Health Score",
                        color='black')

    charts.save_file('plots/_time_series_' + period + str(name))
countries = {}

for doc in docs:
  if LANG in doc:
    lang = doc[LANG]
    if lang:
      lang = lang.upper()
      if lang in langs:
        langs[lang] += 1
      else:
        langs[lang] = 1
  if COUNTRY in doc:
    country = doc[COUNTRY]
    if country:
      if country in countries:
        countries[country] += 1
      else:
        countries[country] = 1

chart = Highchart()
options = {TITLE : {TEXT : 'Results per Language'}} 
chart.set_dict_options(options)
chart.add_data_set(langs.items(), series_type='pie', name='Results')
chart.save_file(splitext(argv[2])[0])

chart = Highchart()
options = {TITLE : {TEXT : 'Results per Country'}} 
chart.set_dict_options(options)
chart.add_data_set(countries.items(), series_type='pie', name='Results')
chart.save_file(splitext(argv[3])[0])
예제 #13
0
def create_histogram(src, dst_html, title=None, subtitle=None,
                     x_axis_header=None, y_axis_header=None, x_axis_name=None, y_axis_name=None):
    """Creates basic histogram using Highcharts

        Args:
            src (string or DataFrame): Path to csv with source data or DataFrame with source data.
            dst_html (string): Path to destination html output
            title (string): Title of histogram
            subtitle (string): Subtitle of histogram
            x_axis_header (str): Name of x-axis header in csv file. Defaults to None.
            y_axis_header (str): Name of y-axis header in csv file. Defaults to None.
            x_axis_name (str): Name of x-axis to use in histogram. Defaults to None.
            y_axis_name (str): Name of y-axis to use in histogram. Defaults to None.

        Returns:
            None.

    """

    # Check destination
    if dst_html[-5:] == '.html':
        dst_chart = dst_html[:-5]  # Omit '.html' for exporting with Highcharts
    else:
        dst_chart = dst_html
        dst_html += '.html'

    # Import source csv into pandas DataFrame
    if type(src) == 'str':
        src_df = pd.read_csv(src)
    elif isinstance(src, pd.core.frame.DataFrame):
        src_df = src

    # Define headers if not given
    if not x_axis_header:
        x_axis_header = src_df.columns[0]
    if not y_axis_header:
        y_axis_header = src_df.columns[1]

    # Define axis names if not given
    if not x_axis_name:
        x_axis_name = x_axis_header
    if not y_axis_name:
        y_axis_name = y_axis_header

    # Convert source to list of lists, convert x-axis to category list for labels
    hist_data = []
    hist_categories = []  # Explicitly define x-axis categories to workaround zoom glitch
    for index, row in src_df.iterrows():
        hist_data.append([str(row[x_axis_header]), float(row[y_axis_header])])
        hist_categories.append(str(row[x_axis_header]))

    # Define chart options
    options = {
        'chart': {
            'type': 'column',
            'zoomType': 'x'  # Causes incorrect x-axis labels if categories are not explicitly defined
        },
        'title': {
            'text': title
        },
        'subtitle': {
            'text': subtitle
        },
        'xAxis': {
            'type': 'category',
            'categories': hist_categories,
            'title': {
                'text': x_axis_name
            }
        },
        'yAxis': {
            'title': {
                'text': y_axis_name
            }
        },
        'tooltip': {
            'shared': True,
            'pointFormat': '{point.y:,.0f}'
        },
        'legend': {
            'enabled': False
        },
        'plotOptions': {
            'series': {
                'borderWidth': 0,
                'dataLabels': {
                    'enabled': True,
                    'format': '{point.y:,.0f}'
                }
            }
        },
    }

    # Create chart, export, and open
    h = Highchart(width=1920, height=1080)
    h.set_dict_options(options)
    h.add_data_set(hist_data, 'column')
    h.save_file(dst_chart)
    webbrowser.open('file://' + dst_html)
예제 #14
0
    'legend': {
        'enabled': True
    },
    'xAxis': {
        'title': {
            'text': 'Followers (thousands)'
        }
    },
    'yAxis': {
        'title': {
            'text': 'Friends (thousands)'
        }
    },
}

data1 = [[161, 51], [167, 59], [159, 49], [157, 63], [155, 53]]

data2 = [[174, 165], [175, 171], [193, 180], [186, 172], [187, 178]]

chart.set_dict_options(options)

chart.add_data_set(
    data1, 'scatter', 'Celebrity accounts',
    color='rgba(223, 83, 83,0.5)')  # data, type_of_chart, legend_text, color
chart.add_data_set(data2,
                   'scatter',
                   'Normal user accounts',
                   color='rgba(119, 152, 191,0.5)')

chart.save_file('./highcharts-scatter')  # write to the file and save
예제 #15
0
    option is a (python) dict for options settings

The way to use this method is very similar to the options object as on highcharts docs:
http://www.highcharts.com/docs/getting-started/how-to-set-options
1. construct option (python) dict similar to the option object in javascript
2. input option dict using set_dict_options
(for all the option details please ref to highcharts API: http://api.highcharts.com/highcharts#)
"""
options = {
    'xAxis': {
        'plotBands': [{
            'color': '#FCFFC5',
            'from': 2,
            'to': 4
        }, {
            'color': '#FCFFC5',
            'from': 6,
            'to': 8
        }, {
            'color': '#FCFFC5',
            'from': 10,
            'to': 12
        }]
    }
}
H.set_dict_options(
    options)  # input option object using set_dict_options method

H  # showing the chart on ipython
H.save_file('highcharts'
            )  # save result as .html file with input name (and location path)
예제 #16
0
def make_inverted_error_highcharts(predictions, folder_path):
    """Creates htmls with actual, prediction, and error plots with yearly aggregation.

    Args:
        actual_data (dictionary): Real data with structure {Aggregation: pandas DataFrame}.
        predictions (dictionary): Predictions with structure {Year: {Aggregation: pandas DataFrame}}.
        folder_path (string): Path to folder where html files are to be saved.

    """

    # Define validation years to check error with

    # Create dictionary mapping year predicted upon to list of lists of applied weather years and prediction errors
    inverted_dict = {}
    for applied_weather_year in sorted(predictions):
        df = predictions[applied_weather_year]['Yearly']
        for predicted_year in df.Date:
            if int(applied_weather_year) > 2016:
                try:
                    inverted_dict[str(predicted_year)].append([
                        str(int(applied_weather_year) + predicted_year - 2015),
                        float(df.loc[df['Date'] == int(
                            predicted_year)].Prediction)
                    ])
                except KeyError:
                    inverted_dict[str(predicted_year)] = [[
                        str(int(applied_weather_year) + predicted_year - 2015),
                        float(df.loc[df['Date'] == int(
                            predicted_year)].Prediction)
                    ]]

    # Create inverted error plots
    for year in sorted(inverted_dict):

        # Define chart dimensions
        H = Highchart(width=1920, height=800)

        # Initialize options
        options = {
            'chart': {
                'type': 'column'
            },
            'title': {
                'text':
                'URD Fault Prediction Error for {} with offset weather applied (Only for years in validation set)'
                .format(year)
            },
            'subtitle': {
                'text':
                'Click the links above to change the year predicted on.'
            },
            'xAxis': {
                'type': 'category',
                'title': {
                    'text': ''
                }
            },
            'yAxis': [{
                'gridLineWidth': 0,
                'title': {
                    'text': '',
                    'style': {
                        'color': 'Highcharts.getOptions().colors[1]'
                    }
                },
                'labels': {
                    'format': '{value}',
                    'style': {
                        'color': 'Highcharts.getOptions().colors[1]'
                    }
                },
                'opposite': False
            }],
            'tooltip': {
                'shared': True,
                'pointFormat': '{series.name}: <b>{point.y:.0f}</b> <br />'
            },
            'legend': {
                'layout':
                'vertical',
                'align':
                'left',
                'x':
                80,
                'verticalAlign':
                'top',
                'y':
                55,
                'floating':
                True,
                'backgroundColor':
                "(Highcharts.theme && Highcharts.theme.legendBackgroundColor) || '#FFFFFF'"
            },
            'plotOptions': {
                'series': {
                    'borderWidth': 0,
                    'dataLabels': {
                        'enabled':
                        False,
                        'format':
                        '{point.y:,.0f}',
                        'formatter':
                        'function() {if (this.y != 0) {return Math.round(this.y)} else {return null;}}'
                    }
                }
            },
        }

        # Plot with highcharts
        H.set_dict_options(options)
        H.add_data_set(inverted_dict[year],
                       'column',
                       'Error',
                       dataLabels={'enabled': True},
                       color='#777',
                       animation=True)

        # Export plot
        filename = os.path.join(folder_path,
                                'URD_Prediction_Errors_{}'.format(year))
        try:
            H.save_file(filename)
        except IOError:  # Raised if folder_path directory doesn't exist
            os.mkdir(folder_path)
            H.save_file(filename)

    # Open plot and replace beginning of file with links
    headstring = "<center> "
    for year in sorted(inverted_dict):
        filename = os.path.join(folder_path,
                                'URD_Prediction_Errors_{}.html'.format(year))
        headstring += '<a href="{0}.html" style="color: #555; font-size: 24px">{1}</a> &ensp;'.format(
            filename[:-5], year)
    headstring += " </center>"

    for year in sorted(inverted_dict):
        filename = os.path.join(folder_path,
                                'URD_Prediction_Errors_{}.html'.format(year))
        with open(filename, 'r') as f:
            content = f.read()
        with open(filename, 'w') as f:
            f.write(headstring)
            f.write(content)
예제 #17
0
def make_highcharts(actual_data, predictions, folder_path):
    """Creates htmls with actual, prediction, and error plots with yearly aggregation.

    Args:
        actual_data (dictionary): Real data with structure {Aggregation: pandas DataFrame}.
        predictions (dictionary): Predictions with structure {Year: {Aggregation: pandas DataFrame}}.
        folder_path (string): Path to folder where html files are to be saved.

    """

    # Convert real data to list of lists for plotting with highcharts
    actual = actual_data['Time', 'Inertial'].values.tolist()

    # Initialize list of years
    l_years = []

    # Create yearly plots
    for year in sorted(predictions):
        df = predictions[year]['Yearly']
        if year == '.Actual':
            year = 'Actual'
        l_years.append(year)

        # Define chart dimensions
        H = Highchart(width=1920, height=800)

        # Initialize options
        options = {
            'chart': {
                'type': 'column'
            },
            'title': {
                'text':
                'URD Fault Predictions with {} Weather Applied to 2016 Data'.
                format(year)
            },
            'subtitle': {
                'text': 'Click the links above to change the weather offset.'
            },
            'xAxis': {
                'type': 'category',
                'title': {
                    'text': ''
                }
            },
            'yAxis': [{
                'gridLineWidth': 0,
                'title': {
                    'text': '',
                    'style': {
                        'color': 'Highcharts.getOptions().colors[1]'
                    }
                },
                'labels': {
                    'format': '{value}',
                    'style': {
                        'color': 'Highcharts.getOptions().colors[1]'
                    }
                },
                'opposite': False
            }],
            'tooltip': {
                'shared': True,
                'pointFormat': '{series.name}: <b>{point.y:.0f}</b> <br />'
            },
            'legend': {
                'layout':
                'vertical',
                'align':
                'left',
                'x':
                80,
                'verticalAlign':
                'top',
                'y':
                55,
                'floating':
                True,
                'backgroundColor':
                "(Highcharts.theme && Highcharts.theme.legendBackgroundColor) || '#FFFFFF'"
            },
            'plotOptions': {
                'series': {
                    'borderWidth': 0,
                    'dataLabels': {
                        'enabled':
                        False,
                        # 'format': '{point.y:,.0f}',
                        'formatter':
                        'function() {if (this.y != 0) {return Math.round(this.y)} else {return null;}}'
                    }
                }
            },
        }

        # Convert pandas dataframe to lists of lists for plotting with highcharts
        error = df.reset_index()[['Date', 'Error']].values.tolist()
        prediction = df.reset_index()[['Date', 'Prediction']].values.tolist()

        # Plot with highcharts
        H.set_dict_options(options)
        H.add_data_set(actual,
                       'line',
                       'Actual',
                       marker={'enabled': False},
                       color='#A00',
                       animation=False)
        H.add_data_set(prediction,
                       'line',
                       'Prediction',
                       marker={'enabled': False},
                       dashStyle='dash',
                       color='#00A',
                       animation=False)
        H.add_data_set(error,
                       'column',
                       'Error',
                       dataLabels={'enabled': True},
                       color='#777',
                       animation=False)

        # Export plot
        filename = os.path.join(folder_path,
                                'URD_Prediction_{}_Weather'.format(year))
        try:
            H.save_file(filename)
        except IOError:  # Raised if folder_path directory doesn't exist
            os.mkdir(folder_path)
            H.save_file(filename)

    # Open plot and replace beginning of file with links
    headstring = "<center> "
    for year in l_years:
        filename = os.path.join(folder_path,
                                'URD_Prediction_{}_Weather.html'.format(year))
        headstring += '<a href="{0}.html" style="color: #555; font-size: 24px">{1}</a> &ensp;'.format(
            filename[:-5], year)
    headstring += " </center>"

    for year in l_years:
        filename = os.path.join(folder_path,
                                'URD_Prediction_{}_Weather.html'.format(year))
        with open(filename, 'r') as f:
            content = f.read()
        with open(filename, 'w') as f:
            f.write(headstring)
            f.write(content)
예제 #18
0
hc = Highchart()
hc.set_options(
    'yAxis', {
        'categories': dataset_names,
        'min': 0,
        'max': len(dataset_names) - 1,
        'title': {
            'text': ''
        },
        'gridLineWidth': 0
    })
hc.set_options('title', {'text': 'example'})
for s in chart.series_list():
    s['supress_errors'] = True  # otherwise setting attr 'linkTo' raise error
    hc.add_data_set(**s)
hc.save_file(filename='example_horizontal')
'''
Plot vertical chart to file <vertical.html>
'''
hc = Highchart()
hc.set_options('chart', {'inverted': True})
hc.set_options('xAxis', {'reversed': False})
hc.set_options(
    'yAxis', {
        'categories': dataset_names,
        'min': 0,
        'max': len(dataset_names) - 1,
        'title': {
            'text': ''
        },
        'gridLineWidth': 0
        [1550534400000, 229.0], [1550620800000, 234.5], [1550707200000, 236.5],
        [1550793600000, 236.5], [1551052800000, 238.0], [1551139200000, 239.5],
        [1551225600000, 239.0], [1551657600000, 235.5], [1551744000000, 233.0],
        [1551830400000, 234.0], [1551916800000, 234.0], [1552003200000, 230.0],
        [1552262400000, 230.5], [1552348800000, 235.5], [1552435200000, 237.0],
        [1552521600000, 234.5], [1552608000000, 239.0], [1552867200000, 241.0],
        [1552953600000, 240.5], [1553040000000, 242.0], [1553126400000, 245.5],
        [1553212800000, 248.5], [1553472000000, 241.5], [1553558400000, 244.0],
        [1553644800000, 241.5], [1553731200000, 242.0], [1553817600000, 245.5],
        [1554076800000, 245.5], [1554163200000, 246.0], [1554249600000, 246.5],
        [1554681600000, 253.0], [1554768000000, 254.0], [1554854400000, 254.0],
        [1554940800000, 252.0], [1555027200000, 252.0], [1555286400000, 255.5],
        [1555372800000, 257.0], [1555459200000, 261.5], [1555545600000, 264.5],
        [1555632000000, 264.5], [1555891200000, 266.0], [1555977600000, 268.0],
        [1556064000000, 269.0], [1556150400000, 267.5], [1556236800000, 260.0],
        [1556496000000, 259.5], [1556582400000, 259.0], [1556755200000, 259.0],
        [1556841600000, 265.0], [1557100800000, 259.0], [1557187200000, 262.5],
        [1557273600000, 260.0], [1557360000000, 256.5], [1557446400000, 256.0],
        [1557705600000, 250.5], [1557792000000, 248.5], [1557878400000, 249.0],
        [1557964800000, 247.0], [1558051200000, 241.5], [1558310400000, 238.0],
        [1558396800000, 234.0], [1558483200000, 238.0], [1558569600000, 230.0],
        [1558656000000, 233.0], [1558915200000, 231.0], [1559001600000, 230.5],
        [1559088000000, 229.5], [1559174400000, 231.0], [1559260800000, 235.5],
        [1559520000000, 238.0], [1559606400000, 233.0], [1559692800000, 235.0],
        [1559779200000, 232.0], [1560124800000, 240.0], [1560211200000, 244.5],
        [1560297600000, 246.0], [1560384000000, 240.0], [1560470400000, 236.0]]

chart.add_data_set(data, 'line', '股價', tooltip={'valueDecimals': 2})

chart.save_file()
예제 #20
0
from highcharts import Highchart

# A chart is the container that your data will be rendered in, it can (obviously) support multiple data series within it.
chart = Highchart()

# Adding a series requires at minimum an array of data points.
# You can also change the series type, the name, or other series options as kwargs.
data = range(1,20)
chart.add_data_set(data, series_type='line', name='Example Series')

# This will generate and save a .html file at the location you assign
chart.save_file()
예제 #21
0
        'maxPadding': 0.05,
        'showLastLabel': True
    },
    'yAxis': {
        'title': {
            'text': 'Temperature'
        },
        'labels': {
            'formatter':
            "function () {\
                return this.value + '°';\
            }"
        },
        'lineWidth': 2
    },
    'legend': {
        'enabled': False
    },
    'tooltip': {
        'headerFormat': '<b>{series.name}</b><br/>',
        'pointFormat': '{point.x} km: {point.y}°C'
    }
}

chart.set_dict_options(options)
data = [[0, 15], [10, -50], [20, -56.5], [30, -46.5], [40, -22.1], [50, -2.5],
        [60, -27.7], [70, -55.7], [80, -76.5]]
chart.add_data_set(data, 'spline', 'Temperature', marker={'enabled': False})

chart.save_file(results)
예제 #22
0
H.set_options('xAxis', {'events': {'pointBreak': 'function(e){return}'}})
H.set_options('chart', {'style': {'fontFamily': 'Lucida Grande, sans-serif', "fontfontSize": '12px'}})
H.set_options('chart', {'style': {"fontfontSize": '22px'}})
H.set_options('chart', {'resetZoomButton': {'position': {'x': 10}}})
H.set_options('chart', {'resetZoomButton': {'relativeTo': 'chart'}})

"""
Set up highchart options using 
2. set_dict_options method: 
    set_dict_options(options)
    option is a (python) dict for options settings

The way to use this method is very similar to the options object as on highcharts docs:
http://www.highcharts.com/docs/getting-started/how-to-set-options
1. construct option (python) dict similar to the option object in javascript
2. input option dict using set_dict_options
(for all the option details please ref to highcharts API: http://api.highcharts.com/highcharts#)
"""
options = {
    'xAxis':{
        'plotBands': 
            [{'color': '#FCFFC5', 'from': 2, 'to': 4}, 
            {'color': '#FCFFC5', 'from': 6, 'to': 8},
            {'color': '#FCFFC5', 'from': 10, 'to': 12}]
        }
}
H.set_dict_options(options) # input option object using set_dict_options method

H # showing the chart on ipython 
H.save_file('highcharts') # save result as .html file with input name (and location path)
예제 #23
0
                'radius': 5,
                'states': {
                    'hover': {
                        'enabled': True,
                        'lineColor': 'rgb(100,100,100)'
                    }
                }
            },
            'states': {
                'hover': {
                    'marker': {
                        'enabled': False
                    }
                }
            },
            'tooltip': {
                'headerFormat': '<b>{series.name}</b><br>',
                #                'pointFormat': '{point.name}:{point.x} , {point.y} '
                'pointFormat': 'Student Srid:{point.name} '
            }
        }
    },
}
H.set_dict_options(options)
for i in range(len(name)):
    H.add_data_set(result[i], 'scatter', name[i])
#H.add_data_set(data2, 'scatter', 'Male', color='rgba(119, 152, 191, .5)')

H.htmlcontent
H.save_file()
예제 #24
0
def hchart_json():
    chart = Highchart()
    data = [3.9, 4.2, 5.7, 8.5, 11.9, 15.2, 17.0, 16.6, 14.2, 10.3, 6.6, 4.8]
    chart.add_data_set(data, series_type='line', name='Example Series')
    chart.save_file()
예제 #25
0
# 'legend': {
#         'layout': 'vertical',
#         'align': 'right',
#         'verticalAlign': 'top',
#         'x': -40,
#         'y': 80,
#         'floating': True,
#         'borderWidth': 1,
#         'backgroundColor': "((Highcharts.theme && Highcharts.theme.legendBackgroundColor) || '#FFFFFF')",
#         'shadow': True,

    # },
}
H.set_dict_options(options)
H.add_data_set(list([i[1] for i in z0]),'bar','网友地区分布top20')
H.save_file('people_dirct')
'''
    **************************************************************************************
    评论粉丝性别分布可视化;
'''
'''
            从MongoDB数据库中提取数据;;;
'''
gender_list =[]
for i in item_info.find():
    if i['gender'] ==0:
        gender_list.append('性别未知')
    elif i['gender'] == 1:
        gender_list.append('男')
    else:
        gender_list.append('女')
예제 #26
0
def plot_scatter(molmap, htmlpath='./', htmlname=None, radius=3):
    '''
    molmap: the object of molmap
    htmlpath: the figure path, not include the prefix of 'html'
    htmlname: the name 
    radius: int, defaut:3, the radius of scatter dot
    '''

    title = '2D emmbedding of %s based on %s method' % (molmap.ftype,
                                                        molmap.method)
    subtitle = 'number of %s: %s, metric method: %s' % (
        molmap.ftype, len(molmap.flist), molmap.metric)
    name = '%s_%s_%s_%s_%s' % (molmap.ftype, len(
        molmap.flist), molmap.metric, molmap.method, 'scatter')

    if not os.path.exists(htmlpath):
        os.makedirs(htmlpath)

    if htmlname:
        name = htmlname + '_' + name

    filename = os.path.join(htmlpath, name)
    print_info('generate file: %s' % filename)

    xy = molmap.embedded.embedding_
    colormaps = molmap.extract.colormaps

    df = pd.DataFrame(xy, columns=['x', 'y'])
    bitsinfo = molmap.extract.bitsinfo.set_index('IDs')
    df = df.join(bitsinfo.loc[molmap.flist].reset_index())
    df['colors'] = df['Subtypes'].map(colormaps)

    H = Highchart(width=1000, height=850)
    H.set_options('chart', {'type': 'scatter', 'zoomType': 'xy'})
    H.set_options('title', {'text': title})
    H.set_options('subtitle', {'text': subtitle})
    H.set_options(
        'xAxis', {
            'title': {
                'enabled': True,
                'text': 'X',
                'style': {
                    'fontSize': 20
                }
            },
            'labels': {
                'style': {
                    'fontSize': 20
                }
            },
            'gridLineWidth': 1,
            'startOnTick': True,
            'endOnTick': True,
            'showLastLabel': True
        })

    H.set_options(
        'yAxis', {
            'title': {
                'text': 'Y',
                'style': {
                    'fontSize': 20
                }
            },
            'labels': {
                'style': {
                    'fontSize': 20
                }
            },
            'gridLineWidth': 1,
        })

    #     H.set_options('legend', {'layout': 'horizontal','verticalAlign': 'top','align':'right','floating': False,
    #                              'backgroundColor': "(Highcharts.theme && Highcharts.theme.legendBackgroundColor) || '#FFFFFF'",
    #                              'borderWidth': 1})

    H.set_options(
        'legend', {
            'align': 'right',
            'layout': 'vertical',
            'margin': 1,
            'verticalAlign': 'top',
            'y': 40,
            'symbolHeight': 12,
            'floating': False,
        })

    H.set_options(
        'plotOptions', {
            'scatter': {
                'marker': {
                    'radius': radius,
                    'states': {
                        'hover': {
                            'enabled': True,
                            'lineColor': 'rgb(100,100,100)'
                        }
                    }
                },
                'states': {
                    'hover': {
                        'marker': {
                            'enabled': False
                        }
                    }
                },
                'tooltip': {
                    'headerFormat': '<b>{series.name}</b><br>',
                    'pointFormat': '{point.IDs}'
                }
            },
            'series': {
                'turboThreshold': 5000
            }
        })

    for subtype, color in colormaps.items():
        dfi = df[df['Subtypes'] == subtype]
        if len(dfi) == 0:
            continue

        data = dfi.to_dict('records')
        H.add_data_set(data, 'scatter', subtype, color=color)
    H.save_file(filename)
    print_info('save html file to %s' % filename)
    return df, H
예제 #27
0
def main():
    """ main function read all files , make plots and process them """

    ## data location, relative
    dir = config.training_dir

    ## run over all files with '*.mat'
    file_type = '*.mat'

    # plotting setup
    charts = Highchart()
    options = {
        'chart': {
            'type': 'line'
        },
        'title': {
            'text': 'test'
        },
        'xAxis': {
            'type': 'float',
            'title': {
                'enabled': True,
                'text': 'time (ms)'
            }
        },
        'yAxis': {
            'type': 'int',
            'title': {
                'enabled': True,
                'text': 'EEG signal'
            }
        }
    }

    charts.set_dict_options(options)

    list_dict = []
    target_list = []

    # get a list of all files to be processed
    file_list = glob.glob(dir + file_type)

    for f in file_list:

        name = f[-9:-4]

        df = convert_mat(f, config.resample_size)

        # create lables that will eventually use in the clasification algorithm
        if "1.mat" in f:
            target = 1
        else:
            target = 0

        values_dict = {}
        # get summary statistics of each channel in the EGG, save them to a list of dictionaries
        for i in df.columns:

            values_dict[i + '_mean'] = df[i].mean
            values_dict[i + '_median'] = df[i].median
            values_dict[i + '_std'] = df[i].std
            values_dict[i + '_min'] = df[i].min
            values_dict[i + '_max'] = df[i].max
            values_dict[i + '_kurt'] = df[i].kurt
            values_dict[i + '_kurtosis'] = df[i].kurtosis
            values_dict[i + '_skew'] = df[i].skew
            values_dict[i + '_var'] = df[i].var

            # plot each channel
            data = df[i].tolist()
            data = [float(j) for j in data]
            charts.add_data_set(data, 'line', i)

        # append summary of each measurement
        list_dict.append(values_dict)
        target_list.append(target)
        charts.save_file(config.out_dir + name)

    # get final data frame
    summary_df = pd.DataFrame.from_records(list_dict)
    summary_df['target'] = pd.Series(target_list)
    summary_df.to_csv(config.out_dir + 'Summary_Stats_df_Training1.csv')
예제 #28
0
                        'created_at'] or 'Oct' in tweet[
                            'created_at'] or 'Nov' in tweet[
                                'created_at'] or 'Dec' in tweet['created_at']:
                y16 += 1
        elif tweet['created_at'][-4:] == '2017':
            if 'Jan' in tweet['created_at'] or 'Feb' in tweet[
                    'created_at'] or 'Mar' in tweet[
                        'created_at'] or 'Apr' in tweet[
                            'created_at'] or 'May' in tweet[
                                'created_at'] or 'Jun' in tweet['created_at']:
                y17 += 1
            elif 'Jul' in tweet['created_at'] or 'Aug' in tweet[
                    'created_at'] or 'Sept' in tweet[
                        'created_at'] or 'Oct' in tweet[
                            'created_at'] or 'Nov' in tweet[
                                'created_at'] or 'Dec' in tweet['created_at']:
                y18 += 1

    if (len(tweets)):
        earlier_tweet_id = sorted(tweet_id_list)[0]
    else:
        tweet_count = max_count

g_data = [
    y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16, y17,
    y18
]
chart.set_dict_options(options)
chart.add_data_set(g_data, 'line', 'PK')
chart.save_file('./highcharts')
예제 #29
0
def main():
    pwd = str(os.getcwd())
    home = os.path.abspath(os.path.join(pwd, os.pardir))
    # data location, relative.
    dir = '/data/train_1/'
    # define test file, layout is from when i wanted to iterate over all files
    # to run over all files change line to '*.mat'
    file_type = '1_920_0.mat'

    file_list = glob.glob(home + dir + file_type)
    for f in file_list:

        name = f[:-4]
        name = name.split('/')
        name = name[len(name) - 1]

        # load .mat file
        mat = scipy.io.loadmat(f)
        headers = [
            'channel0', 'channel1', 'channel2', 'channel3', 'channel4',
            'channel5', 'channel6', 'channel7', 'channel8', 'channel9',
            'channel10', 'channel11', 'channel12', 'channel13', 'channel14',
            'channel15'
        ]

        # get actual data from the .mat file
        channels_data = mat['dataStruct'][0][0][0]
        # resample file
        rs_data = resample(channels_data, 3000, axis=0)

        df = pandas.DataFrame(rs_data, columns=headers)

        charts = Highchart()

        options = {
            'chart': {
                'type': 'line',
                'zoomType': 'x'
            },
            'title': {
                'text': 'test'
            },
            'xAxis': {
                'type': 'float',
                'title': {
                    'enabled': True,
                    'text': 'time (ms)'
                }
            },
            'yAxis': [{
                'type': 'int',
                'title': {
                    'enabled': True,
                    'text': 'EEG signal'
                },
                'opposite': False
            }, {
                'type': 'int',
                'title': {
                    'enabled': True,
                    'text': 'variance'
                },
                'opposite': True
            }]
        }
        charts.set_dict_options(options)

        for i in headers:
            data = df[i].tolist()
            mean = df[i].rolling(window=2).mean()
            d_var = df[i].rolling(window=2).var()
            d_var = d_var.dropna()
            mean = mean.dropna()
            data = [float(j) for j in data]
            disp = []
            d_var = [float(j) for j in d_var]
            mean = [float(j) for j in mean]
            for k in range(len(mean)):
                disp.append(d_var[k] / mean[k])
            charts.add_data_set(data, 'line', i)
            name = str(i) + '_disp'
            charts.add_data_set(disp, 'line', name, yAxis=1)

        charts.save_file(name)
예제 #30
0
    },
    'legend': {
        'enabled': True
    },
    'xAxis': {
        'categories': [
            'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
            'Oct', 'Nov', 'Dec'
        ],
        'title': {
            'text': 'Months of the year'
        }
    },
    'yAxis': {
        'title': {
            'text': 'Number of followers'
        }
    },
}

data1 = [7, 7, 9, 14, 18, 21, 25, 26, 30, 55, 62, 85]
data2 = [11, 17, 22, 25, 56, 76, 91, 102, 150]
data3 = [3, 4, 5, 8, 11, 15, 17, 36, 42, 103, 126, 148]

chart.set_dict_options(options)
chart.add_data_set(data1, 'line', 'User 1')
chart.add_data_set(data2, 'line', 'User 2')
chart.add_data_set(data3, 'line', 'User 3')

chart.save_file('./line-highcharts')
예제 #31
0
    },
    'title': {
        'text': 'Top 10 Hashtags'
    },
    'xAxis': {
        'categories': words
    },
    'yAxis': {
        'title': {
            'text': 'Number of times mentioned'
        }
    },
}
chart.set_dict_options(options)
chart.add_data_set(data1, 'column', 'Count')
chart.save_file('./column-highcharts')

chart2 = Highchart()
options = {
    'chart': {
        'type': 'column'
    },
    'title': {
        'text': 'Original Tweets and Retweeted Tweets'
    },
    'xAxis': {
        'categories': ['Original', 'Retweets']
    },
    'yAxis': {
        'title': {
            'text': 'Number of tweets'
예제 #32
0
    },
    'legend': {
        'enabled': True
    },
    'xAxis': {
        'categories': [
            'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep',
            'Oct', 'Nov', 'Dec'
        ],
        'title': {
            'text': 'Months of the year'
        }
    },
    'yAxis': {
        'title': {
            'text': 'Number of followers'
        }
    },
}

data1 = [7, 7, 9, 14, 18, 21, 25, 26, 30, 55, 62, 85]
data2 = [11, 17, 22, 25, 56, 76, 91, 102, 150]
data3 = [3, 4, 5, 8, 11, 15, 17, 36, 42, 103, 126, 148]

chart.set_dict_options(options)
chart.add_data_set(data1, 'line', 'User 1')  # data, type_of_chart, legend_text
chart.add_data_set(data2, 'line', 'User 2')
chart.add_data_set(data3, 'line', 'User 3')

chart.save_file('./line-highcharts')  # write to the file and save
예제 #33
0
                    'color': 'blue'
                },
                'onArea':True
            }
        }
    }
}

H_area.set_dict_options(options)

H_area.add_data_set(Joy, 'area', 'joy',color = 'rgb(241,199,28)')
H_area.add_data_set(Anger, 'area', 'anger',color ='rgb(207,46,17)')
H_area.add_data_set(Disgust, 'area', 'disgust',color ='rgb(118,181,92)')
H_area.add_data_set(Fear, 'area', 'fear',color ='rgb(151,77,193)')
H_area.add_data_set(Sadness, 'area', 'sadness',color ='rgb(46,116,213)')
H_area.save_file('output_charts_area')

options_column = {
    'chart': {
        'type': 'column',
		'renderTo': 'container_column',
        'options3d': {
            'enabled': True,
            'alpha': 15,
            'beta': 15,
            'viewDistance': 25,
            'depth': 40
        }
    },
    'title': {
        'text': 'Percentage of Emotions to Each Sentence'
        'text': 'Highchart Bar'
    },
    'legend': {
        'enabled': True
    },
    'xAxis': {
        'categories': ['User 1', 'User 2', 'User 3', 'User 4', 'User 5'],
    },
    'yAxis': {
        'title': {
            'text': 'Number of posts (thousands)'
        }
    },
}

# we can use our own data
data1 = [107, 31, 635, 203, 2]
data2 = [133, 156, 947, 408, 6]
data3 = [973, 914, 4054, 732, 34]
data4 = [1052, 954, 4250, 740, 38]

chart.set_dict_options(options)  # add options to the chart object

chart.add_data_set(data1, 'bar', 'Day 1')  # data, type_of_chart, legend_text
chart.add_data_set(data2, 'bar', 'Day 2')
chart.add_data_set(data3, 'bar', 'Day 3')
chart.add_data_set(data4, 'bar', 'Day 4')

chart.save_file('./highcharts-bar'
                )  # it will crete an html file. Used to save the html file
예제 #35
0
    	},
    	series: [{
        	name: 'Words',
        	data: [
            	{ name: 'Joy', y: c1 },
            	{
               		name: 'Sadness',
                	y: c2,
                	sliced: true,
                	selected: true
            	},
            	{ name: 'Anger', y: c3 },
            	{ name: 'Fear', y: c4 },
            	{ name: 'Disgust', y: c5 },
            	{ name: 'Suprise', y: c6 },
            	{ name: 'Shame', y: c7 },
            	{ name: 'Guilt', y: c8 },
            	{ name: 'Happy', y: c9 },
            	{ name: 'Embarassment', y: c10 },
            	{ name: 'Confuse', y: c11 }
            

        	]
    	}]
	});

	chart.save_file('templates/pie_highchart')

if __name__ == '__main__':
	create_graph()