예제 #1
0
def test_tree_default_store():
    t = Tree()
    t.multi_add([b"test"])
    assert t.is_in(b"test")

    t2 = Tree()
    assert not t2.is_in(b"test")
예제 #2
0
def test_tree_empty_store():
    store = {}
    t = Tree(store)
    t.multi_add([b"test"])
    assert t.is_in(b"test")

    t2 = Tree(store, root_hash=t.root())
    assert t2.is_in(b"test")
예제 #3
0
def main():
	t = Tree()	

	from os import urandom
	for _ in range(1000):
		item = urandom(32)
		t.add(item)
		assert t.is_in(item)
		assert not t.is_in(urandom(32))
예제 #4
0
def test_massive():
    t = Tree()

    from os import urandom
    for _ in range(100):
        item = urandom(32)
        t.add(item)
        assert t.is_in(item)
        assert not t.is_in(urandom(32))
예제 #5
0
def test_store_tree(rstore):
    t = Tree(store=rstore)

    from os import urandom
    for _ in range(100):
        item = urandom(32)
        t.add(item, item)
        assert t.is_in(item)
        assert not t.is_in(urandom(32))
예제 #6
0
def main():
	r = RedisStore()
	t = Tree(store=r)	

	from os import urandom
	for _ in range(1000):
		item = urandom(32)
		t.add(item)
		assert t.is_in(item)
		assert not t.is_in(urandom(32))
예제 #7
0
def main():
	r = RedisStore()
	t = Tree(store=r)

	from os import urandom
	for _ in range(1000):
		item = urandom(32)
		t.add(item)
		assert t.is_in(item)
		assert not t.is_in(urandom(32))
예제 #8
0
def test_store_tree():
    _flushDB()

    r = RedisStore()
    t = Tree(store=r)

    from os import urandom
    for _ in range(100):
        item = urandom(32)
        t.add(item, item)
        assert t.is_in(item)
        assert not t.is_in(urandom(32))
예제 #9
0
def test_store_tree():
	_flushDB()

	r = RedisStore()
	t = Tree(store = r)	

	from os import urandom
	for _ in range(100):
		item = urandom(32)
		t.add(item)
		assert t.is_in(item)
		assert not t.is_in(urandom(32))
예제 #10
0
def test_add_isin():
    t = Tree()

    # Test positive case
    t.add(b"Hello")
    assert t.is_in(b"Hello") == True

    # Infix operator
    assert b"Hello" in t
예제 #11
0
def test_add_isin():
	t = Tree()

	# Test positive case
	t.add("Hello")
	assert t.is_in("Hello") == True

	# Infix operator
	assert "Hello" in t
예제 #12
0
def test_evidence():
    t = Tree()

    # Test positive case
    t.add(b"Hello", b"Hello")
    t.add(b"World", b"World")

    root, E = t.evidence(b"World")
    assert len(E) == 2

    store = dict((e.identity(), e) for e in E)
    t2 = Tree(store, root)
    assert t2.is_in(b"World")
예제 #13
0
def test_evidence():
	t = Tree()

	# Test positive case
	t.add("Hello")
	t.add("World")

	root, E = t.evidence("World")
	assert len(E) == 2

	store = dict((e.identity(), e) for e in E)
	t2 = Tree(store, root)
	assert t2.is_in("World")
예제 #14
0
def test_fail_isin():
    t = Tree()

    # Test negative case
    assert t.is_in(b"World") == False
예제 #15
0
def test_fail_isin():
	t = Tree()

	# Test negative case
	assert t.is_in("World") == False
예제 #16
0
def test_e2e_timings():
    friends_graph, all_data = generate_test_data()
    (labels, heads, pubkeys, privkeys) = all_data

    with LocalParams.generate().as_default() as params:
        nonce = os.urandom(PublicParams.get_default().nonce_size)

        # Encode claims
        t0 = time.time()
        c0 = 0
        enc_claims = []
        vrfs = []
        for claim_label, claim_body in zip(labels, heads):
            c0 += 1
            c0 += 1
            enc = encode_claim(nonce, claim_label, claim_body)
            vrf_value, lookup_key, encrypted_claim = enc
            enc_claims += [(lookup_key, encrypted_claim)]
            vrfs += [vrf_value]
        t1 = time.time()
        print("\n\t\tTiming per encoded claim: %1.1f ms" %
              ((t1 - t0) / c0 * 1000))

        # Encode capabilities
        t0 = time.time()
        c0 = 0
        capabilities = []
        cap_index = {}
        for friend in friends_graph:
            friend_dh_pk = pubkeys[friend]
            for fof in friends_graph[friend]:
                c0 += 1
                claim_label = labels[fof]
                vrf_value = vrfs[fof]
                cap_lookup_key, encrypted_cap = encode_capability(
                    friend_dh_pk, nonce, claim_label, vrf_value)
                capabilities += [(cap_lookup_key, encrypted_cap)]
                cap_index[(friend, fof)] = (cap_lookup_key, encrypted_cap)
        t1 = time.time()
        print("\t\tTiming per encoded capab: %1.1f ms" %
              ((t1 - t0) / c0 * 1000))

        data = encode([enc_claims, capabilities])
        print("\t\tData length: %1.1f kb" % (len(data) / 1024.0))

        # Build our non-equivocable tree
        t0 = time.time()
        tree = Tree()
        for lookup_key, enc_item in enc_claims + capabilities:
            tree.add(key=lookup_key, item=enc_item)
            _, evidence = tree.evidence(key=lookup_key)
            assert tree.is_in(enc_item, key=lookup_key)
            enc_item_hash = evidence[-1].item
            tree.store[enc_item_hash] = enc_item

        t1 = time.time()
        print("\t\tTiming for building non-equiv. tree: %1.1f ms" %
              ((t1 - t0) * 1000))

        # Build a chain and a block
        t0 = time.time()
        c0 = 200
        for _ in range(c0):
            chain = Chain(tree.store)
            payload = Payload.build(tree, nonce).export()

            def sign_block(block):
                sig = sign(block.hash())
                block.aux = pet2ascii(sig)

            chain.multi_add([payload], pre_commit_fn=sign_block)

            # Pack block
            block = chain.store[chain.head]
            packed_block = packb(
                ("S", block.index, block.fingers, block.items, block.aux))

        t1 = time.time()

        print("\t\tTiming for building a block: %1.1f ms" %
              ((t1 - t0) / c0 * 1000))
        print("\t\tPacked block size: %d bytes" % (len(packed_block)))

        t0 = time.time()
        c0 = 0

        # Pick a random reader
        for reader in friends_graph:
            reader_params = LocalParams(
                dh=Keypair(sk=privkeys[reader], pk=pubkeys[reader]))
            for reader_friend in friends_graph[reader]:
                claim_label = labels[reader_friend]
                with reader_params.as_default():
                    view = View(chain)
                    c0 += 1
                    head = view[labels[reader_friend]]
                    assert head == heads[reader_friend]

        t1 = time.time()
        print("\t\tTiming for retrieving a claim by label: %1.1f ms" %
              ((t1 - t0) / c0 * 1000))

        # Pick a target proof to produce
        f1 = random.choice(list(friends_graph.keys()))
        f2 = random.choice(list(friends_graph[f1]))

        (cap_lookup_key, encrypted_cap) = cap_index[(f1, f2)]
        (claim_lookup_key, encrypted_claim) = enc_claims[f2]

        root, e1 = tree.evidence(key=cap_lookup_key)
        _, e2 = tree.evidence(key=claim_lookup_key)

        evidence_store = {e.identity(): e for e in e1 + e2}
        t2 = Tree(evidence_store, root)

        assert t2.is_in(key=cap_lookup_key, item=encrypted_cap)
        assert t2.is_in(key=claim_lookup_key, item=encrypted_claim)

        # Serialize evidence:
        evidence = []
        for e in e1 + e2:
            if isinstance(e, Leaf):
                evidence += [(e.key, e.item, tree.store[e.item])]
            elif isinstance(e, Branch):
                evidence += [(e.pivot, e.left_branch, e.right_branch)]
            else:
                pass

        import zlib
        bin_evidence = encode(evidence)
        bin_evidence_compressed = zlib.compress(bin_evidence, 9)
        print("\t\tSize for one proof: %s bytes (compressed %s bytes)" %
              (len(bin_evidence), len(bin_evidence_compressed)))

        print("\t\tPayload:")
        pprint(payload)