예제 #1
0
    def backward(self, y_pred, y_train, cache):

        (X, h1_cache, h2_cache,  h4_cache, h5_cache, score_cache,
         hpool1_cache, hpool1, hpool2_cache, hpool2,
         nl_cache1, nl_cache2,  nl_cache4, nl_cache5,
         bn4_cache,bn5_cache

        ) = cache

        '''Output layer'''
        grad_y = self.dloss_funs[self.loss](y_pred, y_train)
        dh5, dW6, db6 = l.fc_backward(grad_y, score_cache)

        '''FC-2'''
        dh5 = self.backward_nonlin(dh5, nl_cache5)
        dh5, dgamma5, dbeta5 = l.bn_backward(dh5, bn5_cache)
        dh4, dW5, db5 = l.fc_backward(dh5, h5_cache)


        '''FC -1'''
        dh4 = self.backward_nonlin(dh4, nl_cache4)
        dh4, dgamma4, dbeta4 = l.bn_backward(dh4,bn4_cache)
        dhpool3_, dW4, db4 = l.fc_backward(dh4, h4_cache)

        '''reshape'''
        dhpool3 = dhpool3_.ravel().reshape(hpool2.shape)


        '''Pool -2'''
        dpool2 = l.maxpool_backward(dhpool3, hpool2_cache)

        '''Conv -2'''
        dh2 = self.backward_nonlin(dpool2, nl_cache2)
        dh1, dW2, db2 = l.conv_backward(dh2, h2_cache)

        '''pool -1'''
        dpool1 = l.maxpool_backward(dh1, hpool1_cache)

        '''conv -1'''
        dh1 = self.backward_nonlin(dpool1, nl_cache1)
        dX, dW1, db1 = l.conv_backward(dh1, h1_cache)

        grad = dict(W1=dW1, W2=dW2,  W4=dW4, W5=dW5, W6=dW6,
                    b1=db1, b2=db2,  b4=db4, b5=db5, b6=db6,
                    gamma4=dgamma4,gamma5=dgamma5,
                    beta4=dbeta4,beta5=dbeta5
                )

        return grad
예제 #2
0
    def backward(self, y_pred, y_train, cache):
        X, h1_cache, h3_cache, score_cache, hpool_cache, hpool, nl_cache1, nl_cache3 = cache

        # Output layer
        grad_y = self.dloss_funs[self.loss](y_pred, y_train)

        # FC-7
        dh3, dW3, db3 = l.fc_backward(grad_y, score_cache)
        dh3 = self.backward_nonlin(dh3, nl_cache3)

        dh2, dW2, db2 = l.fc_backward(dh3, h3_cache)
        dh2 = dh2.ravel().reshape(hpool.shape)

        # Pool-1
        dpool = l.maxpool_backward(dh2, hpool_cache)

        # Conv-1
        dh1 = self.backward_nonlin(dpool, nl_cache1)
        dX, dW1, db1 = l.conv_backward(dh1, h1_cache)

        grad = dict(
            W1=dW1, W2=dW2, W3=dW3, b1=db1, b2=db2, b3=db3
        )

        return grad
예제 #3
0
    def backward(self, y_pred, y_train, cache):
        X, h1_cache, h3_cache, score_cache, hpool_cache, hpool, nl_cache1, nl_cache3 = cache

        # Output layer
        grad_y = self.dloss_funs[self.loss](y_pred, y_train)

        # FC-7
        dh3, dW3, db3 = l.fc_backward(grad_y, score_cache)
        dh3 = self.backward_nonlin(dh3, nl_cache3)

        dh2, dW2, db2 = l.fc_backward(dh3, h3_cache)
        dh2 = dh2.ravel().reshape(hpool.shape)

        # Pool-1
        dpool = l.maxpool_backward(dh2, hpool_cache)

        # Conv-1
        dh1 = self.backward_nonlin(dpool, nl_cache1)
        dX, dW1, db1 = l.conv_backward(dh1, h1_cache)

        grad = dict(
            W1=dW1, W2=dW2, W3=dW3, b1=db1, b2=db2, b3=db3
        )

        return grad
예제 #4
0
    def backward(self, y_pred, y_train, cache):
        
        
        #X, h1_cache, h3_cache, score_cache, hpool_cache, hpool, nl_cache1,nl_cache3,u1,u2,u3,bn1_cache,pool_cache,bn3_cache = cache
        

        X, h1_cache, h3_cache, score_cache, hpool_cache, hpool, nl_cache1, nl_cache3= cache

        # Output layer
        grad_y = self.dloss_funs[self.loss](y_pred, y_train)

        # FC-7
        dh3, dW3, db3 = l.fc_backward(grad_y, score_cache)
        #dW3+=reg.dl2_reg(self.model['W3'],self.lam)
        dh3 = self.backward_nonlin(dh3, nl_cache3)
        #dh3 = l.dropout_backward(dh3,u3)
        #dh3,dgamma3,dbeta3= l.bn_backward(dh3,bn3_cache)
     

        dh2, dW2, db2 = l.fc_backward(dh3, h3_cache)
        #dh2 = l.dropout_backward(dh2,u2)
        dh2 = dh2.ravel().reshape(hpool.shape)
      

        #Pool-1
        #dpool,dgamma2,dbeta2 = l.conv_bn_backward(dh2,pool_cache)
        dpool = l.maxpool_backward(dh2, hpool_cache)
        


        # Conv-1
        dh1 = self.backward_nonlin(dpool, nl_cache1)
        #dX, dW1, db1 = l.conv_backward(dh1, h1_cache)
        #dW1+=reg.dl2_reg(self.model['W1'],self.lam)
        #dh1= l.dropout_backward(dh1,u1)
        #dh1,dgamma1,dbeta1 = l.conv_bn_backward(dh1,bn1_cache)

        dX, dW1, db1 = l.conv_backward(dh1, h1_cache)
        
        
        #grad = dict(W1=dW1, W2=dW2, W3=dW3,b1=db1, b2=db2, b3=db3,gamma1 = dgamma1,beta1 = dbeta1,gamma2 = dgamma2,beta2 = dbeta2,gamma3=dgamma3,beta3=dbeta3)
        
        
        grad = dict(
            W1=dW1, W2=dW2, W3=dW3, b1=db1, b2=db2, b3=db3

        )
        
        return grad