예제 #1
0
def detect_tile_nuclei(slide_path, tile_position, args, it_kwargs,
                       src_mu_lab=None, src_sigma_lab=None):

    # get slide tile source
    ts = large_image.getTileSource(slide_path)

    # get requested tile
    tile_info = ts.getSingleTile(
        tile_position=tile_position,
        format=large_image.tilesource.TILE_FORMAT_NUMPY,
        **it_kwargs)

    # get tile image
    im_tile = tile_info['tile'][:, :, :3]

    # perform color normalization
    im_nmzd = htk_cnorm.reinhard(im_tile,
                                 args.reference_mu_lab,
                                 args.reference_std_lab,
                                 src_mu=src_mu_lab,
                                 src_sigma=src_sigma_lab)

    # perform color decovolution
    w = cli_utils.get_stain_matrix(args)

    im_stains = htk_cdeconv.color_deconvolution(im_nmzd, w).Stains

    im_nuclei_stain = im_stains[:, :, 0].astype(np.float)

    # segment nuclear foreground
    im_nuclei_fgnd_mask = im_nuclei_stain < args.foreground_threshold

    # segment nuclei
    im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
        im_nuclei_stain,
        im_nuclei_fgnd_mask,
        args.min_radius,
        args.max_radius,
        args.min_nucleus_area,
        args.local_max_search_radius
    )

    # Delete border nuclei
    if args.ignore_border_nuclei is True:

        im_nuclei_seg_mask = htk_seg_label.delete_border(im_nuclei_seg_mask)

    # generate nuclei annotations
    nuclei_annot_list = []

    flag_nuclei_found = np.any(im_nuclei_seg_mask)

    if flag_nuclei_found:
        nuclei_annot_list = cli_utils.create_tile_nuclei_annotations(
            im_nuclei_seg_mask, tile_info, args.nuclei_annotation_format)

    return nuclei_annot_list
예제 #2
0
    def test_create_tile_nuclei_annotations(self):

        wsi_path = os.path.join(
            utilities.externaldata(
                'data/TCGA-06-0129-01Z-00-DX3.bae772ea-dd36-47ec-8185-761989be3cc8.svs.sha512'  # noqa
            ))

        # define parameters
        args = {
            'reference_mu_lab': [8.63234435, -0.11501964, 0.03868433],
            'reference_std_lab': [0.57506023, 0.10403329, 0.01364062],
            'stain_1': 'hematoxylin',
            'stain_2': 'eosin',
            'stain_3': 'null',
            'stain_1_vector': [-1, -1, -1],
            'stain_2_vector': [-1, -1, -1],
            'stain_3_vector': [-1, -1, -1],
            'min_fgnd_frac': 0.50,
            'analysis_mag': 20,
            'analysis_tile_size': 1200,
            'foreground_threshold': 60,
            'min_radius': 6,
            'max_radius': 12,
            'min_nucleus_area': 25,
            'local_max_search_radius': 8,

            # In Python 3 unittesting, the scheduler fails if it uses processes
            'scheduler': 'multithreading',  # None,
            'num_workers': -1,
            'num_threads_per_worker': 1,
        }

        args = collections.namedtuple('Parameters', args.keys())(**args)

        # read WSI
        ts = large_image.getTileSource(wsi_path)

        ts_metadata = ts.getMetadata()

        analysis_tile_size = {
            'width':
            int(ts_metadata['tileWidth'] * np.floor(
                1.0 * args.analysis_tile_size / ts_metadata['tileWidth'])),
            'height':
            int(ts_metadata['tileHeight'] * np.floor(
                1.0 * args.analysis_tile_size / ts_metadata['tileHeight']))
        }

        # define ROI
        roi = {
            'left': ts_metadata['sizeX'] / 2,
            'top': ts_metadata['sizeY'] * 3 / 4,
            'width': analysis_tile_size['width'],
            'height': analysis_tile_size['height'],
            'units': 'base_pixels'
        }

        # define tile iterator parameters
        it_kwargs = {
            'tile_size': {
                'width': args.analysis_tile_size
            },
            'scale': {
                'magnification': args.analysis_mag
            },
            'region': roi
        }

        # create dask client
        cli_utils.create_dask_client(args)

        # get tile foregreoung at low res
        im_fgnd_mask_lres, fgnd_seg_scale = \
            cli_utils.segment_wsi_foreground_at_low_res(ts)

        # compute tile foreground fraction
        tile_fgnd_frac_list = htk_utils.compute_tile_foreground_fraction(
            wsi_path, im_fgnd_mask_lres, fgnd_seg_scale, it_kwargs)

        num_fgnd_tiles = np.count_nonzero(
            tile_fgnd_frac_list >= args.min_fgnd_frac)

        np.testing.assert_equal(num_fgnd_tiles, 2)

        # create nuclei annotations
        nuclei_bbox_annot_list = []
        nuclei_bndry_annot_list = []

        for tile_info in ts.tileIterator(
                format=large_image.tilesource.TILE_FORMAT_NUMPY, **it_kwargs):

            im_tile = tile_info['tile'][:, :, :3]

            # perform color normalization
            im_nmzd = htk_cnorm.reinhard(im_tile, args.reference_mu_lab,
                                         args.reference_std_lab)

            # perform color deconvolution
            w = cli_utils.get_stain_matrix(args)

            im_stains = htk_cdeconv.color_deconvolution(im_nmzd, w).Stains

            im_nuclei_stain = im_stains[:, :, 0].astype(np.float)

            # segment nuclei
            im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
                im_nuclei_stain, im_nuclei_stain < args.foreground_threshold,
                args.min_radius, args.max_radius, args.min_nucleus_area,
                args.local_max_search_radius)

            # generate nuclei annotations as bboxes
            cur_bbox_annot_list = cli_utils.create_tile_nuclei_annotations(
                im_nuclei_seg_mask, tile_info, 'bbox')

            nuclei_bbox_annot_list.extend(cur_bbox_annot_list)

            # generate nuclei annotations as boundaries
            cur_bndry_annot_list = cli_utils.create_tile_nuclei_annotations(
                im_nuclei_seg_mask, tile_info, 'boundary')

            nuclei_bndry_annot_list.extend(cur_bndry_annot_list)

        # compare nuclei bbox annotations with gtruth
        nuclei_bbox_annot_gtruth_file = os.path.join(
            utilities.externaldata(
                'data/TCGA-06-0129-01Z-00-DX3_roi_nuclei_bbox.anot.sha512'  # noqa
            ))

        with open(nuclei_bbox_annot_gtruth_file, 'r') as fbbox_annot:
            nuclei_bbox_annot_list_gtruth = json.load(fbbox_annot)['elements']

        # Check that nuclei_bbox_annot_list is nearly equal to
        # nuclei_bbox_annot_list_gtruth
        assert len(nuclei_bbox_annot_list) == len(
            nuclei_bbox_annot_list_gtruth)
        for pos in range(len(nuclei_bbox_annot_list)):
            np.testing.assert_array_almost_equal(
                nuclei_bbox_annot_list[pos]['center'],
                nuclei_bbox_annot_list_gtruth[pos]['center'], 0)
            np.testing.assert_almost_equal(
                nuclei_bbox_annot_list[pos]['width'],
                nuclei_bbox_annot_list_gtruth[pos]['width'], 1)
            np.testing.assert_almost_equal(
                nuclei_bbox_annot_list[pos]['height'],
                nuclei_bbox_annot_list_gtruth[pos]['height'], 1)

        # compare nuclei boundary annotations with gtruth
        nuclei_bndry_annot_gtruth_file = os.path.join(
            utilities.externaldata(
                'data/TCGA-06-0129-01Z-00-DX3_roi_nuclei_boundary.anot.sha512'  # noqa
            ))

        with open(nuclei_bndry_annot_gtruth_file, 'r') as fbndry_annot:
            nuclei_bndry_annot_list_gtruth = json.load(
                fbndry_annot)['elements']

        assert len(nuclei_bndry_annot_list) == len(
            nuclei_bndry_annot_list_gtruth)

        for pos in range(len(nuclei_bndry_annot_list)):

            np.testing.assert_array_almost_equal(
                nuclei_bndry_annot_list[pos]['points'],
                nuclei_bndry_annot_list_gtruth[pos]['points'], 0)
예제 #3
0
def compute_tile_nuclei_features(slide_path,
                                 tile_position,
                                 args,
                                 it_kwargs,
                                 src_mu_lab=None,
                                 src_sigma_lab=None):

    # get slide tile source
    ts = large_image.getTileSource(slide_path)

    # get requested tile
    tile_info = ts.getSingleTile(
        tile_position=tile_position,
        format=large_image.tilesource.TILE_FORMAT_NUMPY,
        **it_kwargs)

    # get tile image
    im_tile = tile_info['tile'][:, :, :3]

    # perform color normalization
    im_nmzd = htk_cnorm.reinhard(im_tile,
                                 args.reference_mu_lab,
                                 args.reference_std_lab,
                                 src_mu=src_mu_lab,
                                 src_sigma=src_sigma_lab)

    # perform color decovolution
    w = cli_utils.get_stain_matrix(args)

    im_stains = htk_cdeconv.color_deconvolution(im_nmzd, w).Stains

    im_nuclei_stain = im_stains[:, :, 0].astype(np.float)

    # segment nuclei
    im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
        im_nuclei_stain, args.foreground_threshold, args.min_radius,
        args.max_radius, args.min_nucleus_area, args.local_max_search_radius)

    # generate nuclei annotations
    nuclei_annot_list = cli_utils.create_tile_nuclei_annotations(
        im_nuclei_seg_mask, tile_info, args.nuclei_annotation_format)

    # compute nuclei features
    if args.cytoplasm_features:
        im_cytoplasm_stain = im_stains[:, :, 1].astype(np.float)
    else:
        im_cytoplasm_stain = None

    fdata = htk_features.compute_nuclei_features(
        im_nuclei_seg_mask,
        im_nuclei_stain,
        im_cytoplasm_stain,
        fsd_bnd_pts=args.fsd_bnd_pts,
        fsd_freq_bins=args.fsd_freq_bins,
        cyto_width=args.cyto_width,
        num_glcm_levels=args.num_glcm_levels,
        morphometry_features_flag=args.morphometry_features,
        fsd_features_flag=args.fsd_features,
        intensity_features_flag=args.intensity_features,
        gradient_features_flag=args.gradient_features,
    )

    fdata.columns = ['Feature.' + col for col in fdata.columns]

    return nuclei_annot_list, fdata
예제 #4
0
    def setUp(self):

        # define parameters
        args = {

            'reference_mu_lab': [8.63234435, -0.11501964, 0.03868433],
            'reference_std_lab': [0.57506023, 0.10403329, 0.01364062],

            'min_radius': 12,
            'max_radius': 30,
            'foreground_threshold': 60,
            'min_nucleus_area': 80,
            'local_max_search_radius': 10,
        }

        args = collections.namedtuple('Parameters', args.keys())(**args)

        # read input image
        input_image_file = os.path.join(TEST_DATA_DIR, 'Easy1.png')

        im_input = skimage.io.imread(input_image_file)[:, :, :3]

        # perform color normalization
        im_input_nmzd = htk_cnorm.reinhard(
            im_input, args.reference_mu_lab, args.reference_std_lab)

        # perform color decovolution
        w = htk_cdeconv.rgb_separate_stains_macenko_pca(
            im_input_nmzd, im_input_nmzd.max())

        im_stains = htk_cdeconv.color_deconvolution(im_input_nmzd, w).Stains

        nuclei_channel = htk_cdeconv.find_stain_index(
            htk_cdeconv.stain_color_map['hematoxylin'], w)

        im_nuclei_stain = im_stains[:, :, nuclei_channel].astype(np.float)

        cytoplasm_channel = htk_cdeconv.find_stain_index(
            htk_cdeconv.stain_color_map['eosin'], w)

        im_cytoplasm_stain = im_stains[:, :, cytoplasm_channel].astype(
            np.float)

        # segment nuclei
        im_nuclei_seg_mask = htk_nuclear.detect_nuclei_kofahi(
            im_nuclei_stain,
            im_nuclei_stain < args.foreground_threshold,
            args.min_radius,
            args.max_radius,
            args.min_nucleus_area,
            args.local_max_search_radius
        )

        # perform connected component analysis
        nuclei_rprops = skimage.measure.regionprops(im_nuclei_seg_mask)

        # compute nuclei features
        fdata_nuclei = htk_features.compute_nuclei_features(
            im_nuclei_seg_mask, im_nuclei_stain,
            im_cytoplasm=im_cytoplasm_stain)

        self.im_input = im_input
        self.im_input_nmzd = im_input_nmzd
        self.im_nuclei_stain = im_nuclei_stain
        self.im_nuclei_seg_mask = im_nuclei_seg_mask
        self.nuclei_rprops = nuclei_rprops
        self.fdata_nuclei = fdata_nuclei