threads, verbosity=VERBOSE) result = op.solve(args.enumerate) if VERBOSE: print("\n", ht.now(), 'Result dataframe has been constructed...') result_4digit = result.applymap(get_types) for iii in ["A1", "A2", "B1", "B2", "C1", "C2"]: if not iii in result_4digit: result_4digit[iii] = None r = result_4digit[["A1", "A2", "B1", "B2", "C1", "C2", "nof_reads", "obj"]] # write CSV to out. And generate plots r.to_csv(out_csv, sep="\t", columns=["A1", "A2", "B1", "B2", "C1", "C2", "nof_reads", "obj"], header=["A1", "A2", "B1", "B2", "C1", "C2", "Reads", "Objective"]) hlatype = result.iloc[0][["A1", "A2", "B1", "B2", "C1", "C2"]].drop_duplicates().dropna() features_used = [('intron', 1), ('exon', 2), ('intron', 2), ('exon', 3), ('intron', 3)] \ if not args.rna else [('exon',2),('exon',3)] plot_variables = [ pos, read_details, pos2, read_details2, (binary_p, binary_un, binary_mis) ] if is_paired else [pos, read_details] coverage_mat = ht.calculate_coverage(plot_variables, features, hlatype, features_used) ht.plot_coverage(out_plot, coverage_mat, table, features, features_used)
groups_4digit = defaultdict(list) for allele in allele_ids: type_4digit = get_4digit(allele) groups_4digit[type_4digit].append(allele) sparse_dict = ht.mtx_to_sparse_dict(compact_mtx) if args.verbose: print "\n", ht.now(), 'Initializing OptiType model...' op = OptiType(sparse_dict, compact_occ, groups_4digit, table, args.beta, 2, config.get("OPTIMIZATION", "SOLVER"), config.get("OPTIMIZATION", "THREADS"), verbosity=verbosity) result = op.solve(args.enumerate) if args.verbose: print "\n", ht.now(), 'Result dataframe has been constructed...' result_4digit = result.applymap(get_types) r = result_4digit[["A1", "A2", "B1", "B2", "C1", "C2", "nof_reads", "obj"]] #write CSV to out. and generate Plots. r.to_csv(out_csv, sep="\t", cols=["A1", "A2", "B1", "B2", "C1", "C2", "nof_reads", "obj"], header=["A1", "A2", "B1", "B2", "C1", "C2", "Reads", "Objective"]) hlatype = result.irow(0)[["A1", "A2", "B1", "B2", "C1", "C2"]].drop_duplicates() features_used = [('intron', 1), ('exon', 2), ('intron', 2), ('exon', 3), ('intron', 3)] \ if not args.rna else [('exon',2),('exon',3)] plot_variables = [pos, etc, desc, pos2, etc2, desc2, binary] if is_paired else [pos, etc, desc] coverage_mat = ht.calculate_coverage(plot_variables, features, hlatype, features_used) ht.plot_coverage(out_plot, coverage_mat, table, features, features_used)