예제 #1
0
def epsilon_g(x,y,N, size=1., ib=True, exp=True, seed=False, tildeM=2, gamma=20):

	'''
	Takes the x and y displacements defined in the tripoint problem and returns
	the error between treating the satellite locations as one and as separate

	seed = False --> use completely random pop dist
	seed = int --> recreate a previous population distribution

	'''
	p2, p3, loci, locb = createPops(x,y,N,size,seed)

	g3 = gravity(p3, alpha=1, beta=1, gamma=gamma, exp=exp)

	# Insert locations into two-point
	p2.popDist = np.insert(p2.popDist, 0, np.array([size, tildeM]), axis=0)
	p2.locCoords = np.insert(p2.locCoords, 0, np.array([loci, locb]), axis=0)

	# re-initialise parameters
	p2.DM, p2.size = p2.distance_matrix(), len(p2.locCoords)

	g2 = gravity(p2, 1, 1, gamma, exp=exp)

	eps = epsilon(g2, g3, ib=ib)

	return eps
예제 #2
0
    def gravity_ODM(self, level, gamma=False, exp=False):
        """
		Returns the ODM for the gravity model at a specific level of clustering.
		
		If level == 0 (no clustering), a dataframe needs to be specified so that 
		a population object (the original) can be created from it.
		"""
        if level == 0:
            pop = self.levels[0].pop
            if type(gamma
                    ) == bool:  # pass explicit gamma instead of using the area
                S = np.mean(self.pop.locArea)  # mean population unit area

        else:
            clustering = self.levels[level - 1]
            pop = self.cluster_population(clustering)
            if type(gamma) == bool:
                S = np.mean(
                    self.levels[level -
                                1].clustered_area)  # mean population unit area

        # So we can pass explicit gamma argument if we'd like
        if type(gamma) == bool:
            gam = gamma_est(
                S, exp=exp
            )  # calculate the gamma exponent with the average population unit area
        else:
            gam = gamma

        g = gravity(pop, 1, 1, gam, exp=exp)

        return g.ODM()
예제 #3
0
def k_ratio(r_ib, r_jk, N, gamma=0.68726, exp=True):
    '''
	Returns the ratio of K values for tri and two-point distributions with certain parameter values 

	'''
    size = 1
    tildeM = 2

    p2, p3, loci, locb = createPops(r_ib, r_jk, N, size, seed=False)

    g3 = gravity(p3, alpha=1, beta=1, gamma=gamma, exp=exp)

    # Insert locations into two-point
    p2.popDist = np.insert(p2.popDist, 0, np.array([size, tildeM]), axis=0)
    p2.locCoords = np.insert(p2.locCoords, 0, np.array([loci, locb]), axis=0)

    g2 = gravity(p2, 1, 1, gamma, exp=exp)

    k3 = g3.K[0]
    k2 = g2.K[0]

    return k2 / k3
예제 #4
0
def gravity_ODM(clusters_list, level, gamma):
    """
	Returns the ODM for the gravity model at a specific level of clustering.
	
	If level = 0 (no clustering), a dataframe needs to be specified so that 
	a population object can be created from it.
	"""

    pop = clusters_list[0].pop

    if level > 0:
        clustering = clusters_list[level - 1]
        pop = cluster_population(clustering)

    g = gravity(pop, 1, 1, gamma)
    return g.ODM()
예제 #5
0
파일: plots.py 프로젝트: jbremz/human_mob
def plot_flow(population, model='all', alpha=1, beta=1, gamma=0.2):
    '''
	Takes a population object and a mobility model and plots the flow probability
	as a function of the (scaled) distance between two locations

	TODO: pass instance of mob_model as second argument
	'''

    distance = []
    flux_gravity = []
    flux_radiation = []
    flux_opportunities = []
    p = population
    g = gravity(p, alpha, beta, gamma)
    r = radiation(p)
    o = opportunities(p, gamma)

    for i in range(p.size):
        for j in range(p.size):
            if i != j:
                distance.append(p.r(i, j) * np.sqrt(p.size))

                if model == 'all':
                    flux_gravity.append(g.flux(i, j))
                    flux_radiation.append(r.flux(i, j))
                    flux_opportunities.append(o.flux(i, j))

                if isinstance(model, gravity) == True:
                    flux_gravity.append(g.flux(i, j))

                if isinstance(model, radiation) == True:
                    flux_radiation.append(r.flux(i, j))

                if isinstance(model, opportunities) == True:
                    flux_opportunities.append(o.flux(i, j))

    plt.loglog(distance, flux_gravity, '.', label='gravity')
    #plt.loglog(distance, flux_radiation, '.', label = 'radiation')
    #plt.loglog(distance, flux_opportunities, '.', label = 'opportunities')

    plt.xlabel(r'$ \~r$')
    plt.ylabel('$p_{ij}$')
    plt.legend()
    plt.title('Log-log plot')
    plt.show()
예제 #6
0
def epsilon(p, i, model, exp=True, tilde = False):
	'''
	Returns epsilon for a given target location i.
	'''
	epsValues = []
	for n in neighbours(p)[1]:
		if n[0] != i and n[1] != i:
			j, k = n[0], n[1]
			p2 = copy.deepcopy(p)

			if tilde == True:
				# use m tilde correction
				p2.popDist[j] = p2.popDist[k] + p2.popDist[j] - model.flux(j, k) - model.flux(k, j)
			if tilde == False:
				# merge two populations
				p2.popDist[j] = p2.popDist[k] + p2.popDist[j]

			# move j to midpoint
			p2.locCoords[j][0] = 0.5*(p2.locCoords[j][0]+ p2.locCoords[k][0])
			p2.locCoords[j][1] = 0.5*(p2.locCoords[j][1]+ p2.locCoords[k][1])
			p2.DM = p2.distance_matrix()

			p2.popDist[k] = 0. #remove k
			b = j #rename j

			if isinstance(model, gravity):
				alpha = model.alpha
				beta = model.beta
				gamma = model.gamma

				g2 = gravity(p2, alpha, beta, gamma, exp=exp)
				flow_ib = g2.flux(i, b)
				eps = (flow_ib - (model.flux(i, j)+model.flux(i, k)))/(flow_ib)

			if isinstance(model, radiation):
				r2 = radiation(p2)
				flow_ib = r2.flux(i, b)
				eps = (flow_ib - (model.flux(i, j)+model.flux(i, k)))/(flow_ib)

			epsValues.append(abs(eps))

	return np.array(epsValues)
예제 #7
0
    plt.tight_layout()
    if isinstance(model, gravity):
        mod = "gravity"
    else:
        mod = "radiation"

    title = mod + "_exp=" + str(exp) + "_" + x_value
    plt.savefig(title)


### Run this to plot:

from hm.pop_models.pop_random import random as pop_random
from hm.hm_models.gravity import gravity
from hm.hm_models.radiation import radiation

N = 100
alpha, beta = 1, 1
S = 1 / N
# exponential
gamma = 0.3 * (S)**(-0.18)
# power law
#gamma = 1.4 * (S)**(0.11)
p = pop_random(N)
g = gravity(p, alpha, beta, gamma, exp=False)

r = radiation(p)
print(np.mean(r_jk(p, 1)))

r_plot(p, r, "r_jk", exp=False)
#r_ib_plot(p, r, 0.1)
예제 #8
0
파일: test.py 프로젝트: jbremz/human_mob
import importlib
from hm.hm_models.gravity import gravity
from hm.hm_models.radiation import radiation
from hm.hm_models.opportunities import opportunities
from hm.pop_models.pop_random import random as pop_random
from hm.pop_models.pop_explicit import explicit as pop_explicit

popDist = [3, 4, 7, 5, 6]
locCoords = [[2, 3], [3, 2], [-5, 9], [0, 1], [1, -8]]
alpha, beta = 1, 1
gamma = 0.2
N = 20

p = pop_random(N)
p1 = pop_explicit(locCoords, popDist)
g = gravity(p, alpha, beta, gamma)
r = radiation(p)
o = opportunities(
    p, gamma
)  # TODO seems a little slow, probably just the nature of the algorithm