def __init__(self, n_iter=100): MultinomialHMM.__init__(self, n_components=len(self.states), n_iter=n_iter) self.voca = dict() self.word_freq = defaultdict(int) self.max_num_segs = 0 self.n_training = 0
def __init__(self, t, theta, rho, algorithm='viterbi', random_state=None, n_iter=20, tol=0, verbose=False): MultinomialHMM.__init__(self, n_components=len(t)+1, algorithm=algorithm, random_state=random_state, n_iter=n_iter, tol=tol, verbose=verbose) self.t = np.append(np.append([0], t), [np.inf]) self.tau = np.diff(self.t) self.theta = theta self.rho = rho
def __init__(self, n_components=1, startprob_prior=1.0, transmat_prior=1.0, algorithm="viterbi", random_state=None, n_iter=10, tol=1e-2, verbose=False, params="ste", init_params="ste"): MultinomialHMM.__init__(self, n_components=n_components, startprob_prior=startprob_prior, transmat_prior=transmat_prior, algorithm=algorithm, random_state=random_state, n_iter=n_iter, tol=tol, verbose=verbose, params=params, init_params=init_params) return