예제 #1
0
파일: fit.py 프로젝트: barkls/holopy
def make_subset_data(data, random_subset=None, pixels=None, return_selection=False):
    if random_subset is None and pixels is None:
        return data
    if random_subset is not None and pixels is not None:
        raise ValueError("You can only specify one of pixels or random_subset")

    tot_pix = len(data.x)*len(data.y)
    if pixels is not None:
        n_sel = pixels
    else:
        n_sel = int(np.ceil(tot_pix*random_subset))
    selection = np.random.choice(tot_pix, n_sel, replace=False)
    subset = flat(data).isel(flat=selection)
    subset = copy_metadata(data, subset, do_coords=False)

    shape = (len(data.x), len(data.y))
    spacing = (get_spacing(data))
    start = (np.asscalar(data.x[0]), np.asscalar(data.y[0]))
    coords = {key:val.values for key, val in dict_without(dict(data.coords), ['x','y','z']).items()}
    subset.attrs['original_dims'] = yaml.dump((shape, spacing, start, coords))

    if return_selection:
        return subset, selection
    else:
        return subset
예제 #2
0
 def _find_new_ties(self):
     reference_parameters = self.raw_parameters
     for fullkey, par in reference_parameters.items():
         if fullkey not in self._all_ties:
             # not already in the list of ties, so check if it should be
             for ref_key, ref_par in dict_without(
                     reference_parameters, fullkey).items():
                 # can't simply check par in parameters because then two
                 # priors defined separately, but identically will match
                 # whereas this way they are counted as separate objects.
                 if par is ref_par and not isinstance(par, Number):
                     self.add_tie(ref_key, fullkey)
                     break
예제 #3
0
파일: result.py 프로젝트: sid6155330/holopy
 def forward(self, pars):
     if hasattr(self.data, 'original_dims'):
         # dealing with subset data
         original_dims = self.data.original_dims
         # can't currently handle non-0 values of z, as in detector_grid
         x = original_dims['x']
         y = original_dims['y']
         shape = (len(x), len(y))
         spacing = (np.diff(x)[0], np.diff(y)[0])
         extra_dims = dict_without(original_dims, ['x', 'y', 'z'])
         schema = detector_grid(shape, spacing, extra_dims=extra_dims)
         schema = copy_metadata(self.data, schema, do_coords=False)
         schema['x'] = x
         schema['y'] = y
     else:
         schema = self.data
     return self.model.forward(pars, schema)
예제 #4
0
def unpack_attrs(a):
    if len(a) == 0:
        return a
    new_attrs = {}
    attr_ref = yaml.load(a[attr_coords], Loader=FullLoader)
    attrs_to_ignore = ['spacing', 'name', '_dummy_channel', '_image_scaling']
    for attr in dict_without(attr_ref, attrs_to_ignore):
        if attr_ref[attr]:
            new_attrs[attr] = xr.DataArray(a[attr],
                                           coords=attr_ref[attr],
                                           dims=list(attr_ref[attr].keys()))
        elif attr in a:
            try:
                new_attrs[attr] = yaml.safe_load(a[attr])
            except AttributeError:
                from holopy.inference.result import warn_text
                warnings.warn(warn_text)
                new_attrs[attr] = a[attr]
        else:
            new_attrs[attr] = None
    return new_attrs
예제 #5
0
 def test_dict_without(self):
     input_dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
     output_dict = dict_without(input_dict, ['a', 'd', 'e'])
     self.assertEqual(input_dict, {'a': 1, 'b': 2, 'c': 3, 'd': 4})
     self.assertEqual(output_dict, {'b': 2, 'c': 3})