def check_methyl_os_tpss(scf_solver): """Try to converge the SCF for the methyl radical molecule with the TPSS functional. Parameters ---------- scf_solver : one of the SCFSolver types in HORTON A configured SCF solver that must be tested. """ fn_fchk = context.get_fn('test/methyl_tpss_321g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine', random_rotate=False) olp = mol.obasis.compute_overlap() kin = mol.obasis.compute_kinetic() na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers) er = mol.obasis.compute_electron_repulsion() external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} terms = [ UTwoIndexTerm(kin, 'kin'), UDirectTerm(er, 'hartree'), UGridGroup(mol.obasis, grid, [ ULibXCMGGA('x_tpss'), ULibXCMGGA('c_tpss'), ]), UTwoIndexTerm(na, 'ne'), ] ham = UEffHam(terms, external) # compute the energy before converging dm_alpha = mol.orb_alpha.to_dm() dm_beta = mol.orb_beta.to_dm() ham.reset(dm_alpha, dm_beta) ham.compute_energy() assert abs(ham.cache['energy'] - -39.6216986265) < 1e-3 # The convergence should be reasonable, not perfect because of limited # precision in the molden file: assert convergence_error_eigen(ham, olp, mol.orb_alpha, mol.orb_beta) < 1e-3 # keep a copy of the orbital energies expected_alpha_energies = mol.orb_alpha.energies.copy() expected_beta_energies = mol.orb_beta.energies.copy() # Converge from scratch occ_model = AufbauOccModel(5, 4) check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha, mol.orb_beta) # test orbital energies assert abs(mol.orb_alpha.energies - expected_alpha_energies).max() < 2e-3 assert abs(mol.orb_beta.energies - expected_beta_energies).max() < 2e-3 ham.compute_energy() # compare with assert abs(ham.cache['energy_kin'] - 38.98408965928) < 1e-2 assert abs(ham.cache['energy_ne'] - -109.2368837076) < 1e-2 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_mgga_x_tpss'] + ham.cache['energy_libxc_mgga_c_tpss'] - 21.55131145126) < 1e-2 assert abs(ham.cache['energy'] - -39.6216986265) < 1e-3 assert abs(ham.cache['energy_nn'] - 9.0797839705) < 1e-5
def check_co_cs_pbe(scf_solver): fn_fchk = context.get_fn('test/co_pbe_sto3g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine', random_rotate=False) olp = mol.obasis.compute_overlap(mol.lf) kin = mol.obasis.compute_kinetic(mol.lf) na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf) er = mol.obasis.compute_electron_repulsion(mol.lf) external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} terms = [ RTwoIndexTerm(kin, 'kin'), RDirectTerm(er, 'hartree'), RGridGroup(mol.obasis, grid, [ RLibXCGGA('x_pbe'), RLibXCGGA('c_pbe'), ]), RTwoIndexTerm(na, 'ne'), ] ham = REffHam(terms, external) # Test energy before scf energy, focks = helper_compute(ham, mol.lf, mol.exp_alpha) assert abs(energy - -1.116465967841901E+02) < 1e-4 # The convergence should be reasonable, not perfect because of limited # precision in Gaussian fchk file: assert convergence_error_eigen(ham, mol.lf, olp, mol.exp_alpha) < 1e-5 # Converge from scratch occ_model = AufbauOccModel(7) check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha) # test orbital energies expected_energies = np.array([ -1.86831122E+01, -9.73586915E+00, -1.03946082E+00, -4.09331776E-01, -3.48686522E-01, -3.48686522E-01, -2.06049056E-01, 5.23730418E-02, 5.23730418E-02, 6.61093726E-01 ]) assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-2 ham.compute_energy() # compare with g09 assert abs(ham.cache['energy_ne'] - -3.072370116827E+02) < 1e-2 assert abs(ham.cache['energy_kin'] - 1.103410779827E+02) < 1e-2 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_gga_x_pbe'] + ham.cache['energy_libxc_gga_c_pbe'] - 6.273115782683E+01) < 1e-2 assert abs(ham.cache['energy'] - -1.116465967841901E+02) < 1e-4 assert abs(ham.cache['energy_nn'] - 22.5181790889) < 1e-7
def check_water_cs_m05(scf_solver): """Try to converge the SCF for the water molecule with the M05 functional. Parameters ---------- scf_solver : one of the SCFSolver types in HORTON A configured SCF solver that must be tested. """ fn_fchk = context.get_fn('test/water_m05_321g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'fine', random_rotate=False) olp = mol.obasis.compute_overlap() kin = mol.obasis.compute_kinetic() na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers) er = mol.obasis.compute_electron_repulsion() external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} libxc_term = RLibXCHybridMGGA('xc_m05') terms = [ RTwoIndexTerm(kin, 'kin'), RDirectTerm(er, 'hartree'), RGridGroup(mol.obasis, grid, [libxc_term]), RExchangeTerm(er, 'x_hf', libxc_term.get_exx_fraction()), RTwoIndexTerm(na, 'ne'), ] ham = REffHam(terms, external) # compute the energy before converging dm_alpha = mol.orb_alpha.to_dm() ham.reset(dm_alpha) ham.compute_energy() assert abs(ham.cache['energy'] - -75.9532086800) < 1e-3 # The convergence should be reasonable, not perfect because of limited # precision in the molden file: assert convergence_error_eigen(ham, olp, mol.orb_alpha) < 1e-3 # keep a copy of the orbital energies expected_alpha_energies = mol.orb_alpha.energies.copy() # Converge from scratch occ_model = AufbauOccModel(5) check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha) # test orbital energies assert abs(mol.orb_alpha.energies - expected_alpha_energies).max() < 2e-3 ham.compute_energy() # compare with assert abs(ham.cache['energy_kin'] - 75.54463056278) < 1e-2 assert abs(ham.cache['energy_ne'] - -198.3003887880) < 1e-2 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_hf'] + ham.cache['energy_libxc_hyb_mgga_xc_m05'] - 3.764537450376E+01) < 1e-2 assert abs(ham.cache['energy'] - -75.9532086800) < 1e-3 assert abs(ham.cache['energy_nn'] - 9.1571750414) < 1e-5
def check_water_cs_hfs(scf_solver): fn_fchk = context.get_fn('test/water_hfs_321g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, random_rotate=False) olp = mol.obasis.compute_overlap() kin = mol.obasis.compute_kinetic() na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers) er = mol.obasis.compute_electron_repulsion() external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} terms = [ RTwoIndexTerm(kin, 'kin'), RDirectTerm(er, 'hartree'), RGridGroup(mol.obasis, grid, [ RDiracExchange(), ]), RTwoIndexTerm(na, 'ne'), ] ham = REffHam(terms, external) # The convergence should be reasonable, not perfect because of limited # precision in Gaussian fchk file and different integration grids: assert convergence_error_eigen(ham, olp, mol.orb_alpha) < 3e-5 # Recompute the orbitals and orbital energies. This should be reasonably OK. dm_alpha = mol.orb_alpha.to_dm() ham.reset(dm_alpha) ham.compute_energy() fock_alpha = np.zeros(dm_alpha.shape) ham.compute_fock(fock_alpha) mol.orb_alpha.from_fock(fock_alpha, olp) expected_energies = np.array([ -1.83691041E+01, -8.29412411E-01, -4.04495188E-01, -1.91740814E-01, -1.32190590E-01, 1.16030419E-01, 2.08119657E-01, 9.69825207E-01, 9.99248500E-01, 1.41697384E+00, 1.47918828E+00, 1.61926596E+00, 2.71995350E+00 ]) assert abs(mol.orb_alpha.energies - expected_energies).max() < 2e-4 assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-7 assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-9 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4 assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4 assert abs(ham.cache['energy_nn'] - 9.1571750414) < 2e-8 # Converge from scratch and check energies occ_model = AufbauOccModel(5) check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha) ham.compute_energy() assert abs(ham.cache['energy_ne'] - -1.977921986200E+02) < 1e-4 assert abs(ham.cache['energy_kin'] - 7.525067610865E+01) < 1e-4 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_x_dirac'] - 3.864299848058E+01) < 2e-4 assert abs(ham.cache['energy'] - -7.474134898935590E+01) < 2e-4
def check_h3_os_pbe(scf_solver): fn_fchk = context.get_fn('test/h3_pbe_321g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False) olp = mol.obasis.compute_overlap() kin = mol.obasis.compute_kinetic() na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers) er = mol.obasis.compute_electron_repulsion() external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} terms = [ UTwoIndexTerm(kin, 'kin'), UDirectTerm(er, 'hartree'), UGridGroup(mol.obasis, grid, [ ULibXCGGA('x_pbe'), ULibXCGGA('c_pbe'), ]), UTwoIndexTerm(na, 'ne'), ] ham = UEffHam(terms, external) # compute the energy before converging dm_alpha = mol.orb_alpha.to_dm() dm_beta = mol.orb_beta.to_dm() ham.reset(dm_alpha, dm_beta) ham.compute_energy() assert abs(ham.cache['energy'] - -1.593208400939354E+00) < 1e-5 # The convergence should be reasonable, not perfect because of limited # precision in Gaussian fchk file: assert convergence_error_eigen(ham, olp, mol.orb_alpha, mol.orb_beta) < 2e-6 # Converge from scratch occ_model = AufbauOccModel(2, 1) check_solve(ham, scf_solver, occ_model, olp, kin, na, mol.orb_alpha, mol.orb_beta) # test orbital energies expected_energies = np.array([ -5.41141676E-01, -1.56826691E-01, 2.13089637E-01, 7.13565167E-01, 7.86810564E-01, 1.40663544E+00 ]) assert abs(mol.orb_alpha.energies - expected_energies).max() < 2e-5 expected_energies = np.array([ -4.96730336E-01, -5.81411249E-02, 2.73586652E-01, 7.41987185E-01, 8.76161160E-01, 1.47488421E+00 ]) assert abs(mol.orb_beta.energies - expected_energies).max() < 2e-5 ham.compute_energy() # compare with g09 assert abs(ham.cache['energy_ne'] - -6.934705182067E+00) < 1e-5 assert abs(ham.cache['energy_kin'] - 1.948808793424E+00) < 1e-5 assert abs(ham.cache['energy_hartree'] + ham.cache['energy_libxc_gga_x_pbe'] + ham.cache['energy_libxc_gga_c_pbe'] - 1.502769385597E+00) < 1e-5 assert abs(ham.cache['energy'] - -1.593208400939354E+00) < 1e-5 assert abs(ham.cache['energy_nn'] - 1.8899186021) < 1e-8
def check_h3_os_hfs(scf_solver): fn_fchk = context.get_fn('test/h3_hfs_321g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False) olp = mol.obasis.compute_overlap(mol.lf) kin = mol.obasis.compute_kinetic(mol.lf) na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf) er = mol.obasis.compute_electron_repulsion(mol.lf) external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} libxc_term = ULibXCLDA('x') terms1 = [ UTwoIndexTerm(kin, 'kin'), UDirectTerm(er, 'hartree'), UGridGroup(mol.obasis, grid, [libxc_term]), UTwoIndexTerm(na, 'ne'), ] ham1 = UEffHam(terms1, external) builtin_term = UDiracExchange() terms2 = [ UTwoIndexTerm(kin, 'kin'), UDirectTerm(er, 'hartree'), UGridGroup(mol.obasis, grid, [builtin_term]), UTwoIndexTerm(na, 'ne'), ] ham2 = UEffHam(terms2, external) # Compare the potential computed by libxc with the builtin implementation energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha, mol.exp_beta) energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha, mol.exp_beta) libxc_pot = ham1.cache.load('pot_libxc_lda_x_both')[:, 0] builtin_pot = ham2.cache.load('pot_x_dirac_alpha') # Libxc apparently approximates values of the potential below 1e-4 with zero. assert abs(libxc_pot - builtin_pot).max() < 1e-4 # Check of the libxc energy matches our implementation assert abs(energy1 - energy2) < 1e-10 ex1 = ham1.cache['energy_libxc_lda_x'] ex2 = ham2.cache['energy_x_dirac'] assert abs(ex1 - ex2) < 1e-10 # The convergence should be reasonable, not perfect because of limited # precision in Gaussian fchk file: assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha, mol.exp_beta) < 1e-5 assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha, mol.exp_beta) < 1e-5 occ_model = AufbauOccModel(2, 1) for ham in ham1, ham2: # Converge from scratch check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha, mol.exp_beta) # test orbital energies expected_energies = np.array([ -4.93959157E-01, -1.13961330E-01, 2.38730924E-01, 7.44216538E-01, 8.30143356E-01, 1.46613581E+00 ]) assert abs(mol.exp_alpha.energies - expected_energies).max() < 1e-5 expected_energies = np.array([ -4.34824166E-01, 1.84114514E-04, 3.24300545E-01, 7.87622756E-01, 9.42415831E-01, 1.55175481E+00 ]) assert abs(mol.exp_beta.energies - expected_energies).max() < 1e-5 ham.compute_energy() # compare with g09 assert abs(ham.cache['energy_ne'] - -6.832069993374E+00) < 1e-5 assert abs(ham.cache['energy_kin'] - 1.870784279014E+00) < 1e-5 assert abs(ham.cache['energy'] - -1.412556114057104E+00) < 1e-5 assert abs(ham.cache['energy_nn'] - 1.8899186021) < 1e-8 assert abs(ham1.cache['energy_hartree'] + ham1.cache['energy_libxc_lda_x'] - 1.658810998195E+00) < 1e-6 assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] - 1.658810998195E+00) < 1e-6
def check_n2_cs_hfs(scf_solver): fn_fchk = context.get_fn('test/n2_hfs_sto3g.fchk') mol = IOData.from_file(fn_fchk) grid = BeckeMolGrid(mol.coordinates, mol.numbers, mol.pseudo_numbers, 'veryfine', random_rotate=False) olp = mol.obasis.compute_overlap(mol.lf) kin = mol.obasis.compute_kinetic(mol.lf) na = mol.obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, mol.lf) er = mol.obasis.compute_electron_repulsion(mol.lf) external = {'nn': compute_nucnuc(mol.coordinates, mol.pseudo_numbers)} libxc_term = RLibXCLDA('x') terms1 = [ RTwoIndexTerm(kin, 'kin'), RDirectTerm(er, 'hartree'), RGridGroup(mol.obasis, grid, [libxc_term]), RTwoIndexTerm(na, 'ne'), ] ham1 = REffHam(terms1, external) builtin_term = RDiracExchange() terms2 = [ RTwoIndexTerm(kin, 'kin'), RDirectTerm(er, 'hartree'), RGridGroup(mol.obasis, grid, [builtin_term]), RTwoIndexTerm(na, 'ne'), ] ham2 = REffHam(terms2, external) # Compare the potential computed by libxc with the builtin implementation energy1, focks1 = helper_compute(ham1, mol.lf, mol.exp_alpha) energy2, focks2 = helper_compute(ham2, mol.lf, mol.exp_alpha) libxc_pot = ham1.cache.load('pot_libxc_lda_x_alpha') builtin_pot = ham2.cache.load('pot_x_dirac_alpha') # Libxc apparently approximates values of the potential below 1e-4 with zero. assert abs(libxc_pot - builtin_pot).max() < 1e-4 # Check of the libxc energy matches our implementation assert abs(energy1 - energy2) < 1e-10 ex1 = ham1.cache['energy_libxc_lda_x'] ex2 = ham2.cache['energy_x_dirac'] assert abs(ex1 - ex2) < 1e-10 # The convergence should be reasonable, not perfect because of limited # precision in Gaussian fchk file: assert convergence_error_eigen(ham1, mol.lf, olp, mol.exp_alpha) < 1e-5 assert convergence_error_eigen(ham2, mol.lf, olp, mol.exp_alpha) < 1e-5 occ_model = AufbauOccModel(7) for ham in ham1, ham2: # Converge from scratch check_solve(ham, scf_solver, occ_model, mol.lf, olp, kin, na, mol.exp_alpha) # test orbital energies expected_energies = np.array([ -1.37107053E+01, -1.37098006E+01, -9.60673085E-01, -3.57928483E-01, -3.16017655E-01, -3.16017655E-01, -2.12998316E-01, 6.84030479E-02, 6.84030479E-02, 7.50192517E-01, ]) assert abs(mol.exp_alpha.energies - expected_energies).max() < 3e-5 ham.compute_energy() assert abs(ham.cache['energy_ne'] - -2.981579553570E+02) < 1e-5 assert abs(ham.cache['energy_kin'] - 1.061620887711E+02) < 1e-5 assert abs(ham.cache['energy'] - -106.205213597) < 1e-4 assert abs(ham.cache['energy_nn'] - 23.3180604505) < 1e-8 assert abs(ham1.cache['energy_hartree'] + ham1.cache['energy_libxc_lda_x'] - 6.247259253877E+01) < 1e-4 assert abs(ham2.cache['energy_hartree'] + ham2.cache['energy_x_dirac'] - 6.247259253877E+01) < 1e-4