예제 #1
0
    def __init__(self, classifier_config_path):
        clf_cfg = Hparam(classifier_config_path)
        cpc_cfg = Hparam(clf_cfg.model.cpc_config_path)
        self.device = clf_cfg.train.device

        speakers_bank = pickle.load(open('templates/mean_speakers_vecs_dict.pkl', 'rb'))
        self.speakers, self.mean_vecs = list(speakers_bank.keys()), torch.stack(list(speakers_bank.values()), dim=0)

        model_cpc = CPCModel_NCE(cpc_cfg).to(clf_cfg.train.device)
        self.model = SpeakerClassificationModel(model_cpc,
                                           clf_cfg.model.hidden_size,
                                           40,
                                           clf_cfg).to(clf_cfg.train.device)
        self.model.load_state_dict(torch.load(clf_cfg.train.checkpoints_dir + '/' + clf_cfg.train.cpc_checkpoint))
        self.model.eval()
예제 #2
0
from tqdm import tqdm
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from tensorboardX import SummaryWriter

from hparams import Hparam
from data.datasets import AudioDataset
from GIL_model.model import GILModel
from GIL_model.freezers import SimultaneousFreezer, IterativeFreezer

config = Hparam('./GIL_model/config.yaml')
gettime = lambda: str(dt.time(dt.now()))[:8]
if not os.path.isdir('./checkpoints'):
    os.mkdir('./checkpoints')

if __name__ == "__main__":
    writer = SummaryWriter()

    print('Extracting data')
    dataset = AudioDataset(config.data.path)
    train_ixs, test_ixs = dataset.train_test_split_ixs(config.train.test_size)
    train_sampler = SubsetRandomSampler(train_ixs)
    test_sampler = SubsetRandomSampler(test_ixs)

    dataloader_fabric = lambda ds, sampler: DataLoader(
        ds, config.train.batch_size, sampler=sampler, drop_last=True)
예제 #3
0
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler

from hparams import Hparam
from data.datasets import SpeakersDataset
from CPC_model.model import CPCModel_NCE
from classifier_models.speaker_model import SpeakerClassificationModel

config = Hparam('./classifier_models/config.yaml')
gettime = lambda: str(dt.time(dt.now()))[:8]
if not os.path.isdir('./checkpoints'):
    os.mkdir('./checkpoints')

if __name__ == "__main__":
    writer = SummaryWriter()

    print('Extracting data')
    dataset = SpeakersDataset(config.data.path)

    train_ixs, test_ixs = dataset.train_test_split_ixs(config.train.test_split)
    train_sampler = SubsetRandomSampler(train_ixs)
    test_sampler = SubsetRandomSampler(test_ixs)

    dataloader_fabric = lambda ds, sampler: DataLoader(
예제 #4
0
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler

from hparams import Hparam
from data.datasets import SpeakersDataset
from GIL_model.model import GILModel
from classifier_models.speaker_model import SpeakerClassificationModel
from GIL_model.freezers import SimultaneousFreezer, IterativeFreezer

config = Hparam('./classifier_models/config_gil.yaml')
gettime = lambda: str(dt.time(dt.now()))[:8]
if not os.path.isdir('./checkpoints'):
    os.mkdir('./checkpoints')

if __name__ == "__main__":
    writer = SummaryWriter()

    print('Extracting data')
    dataset = SpeakersDataset(config.data.path)

    train_ixs, test_ixs = dataset.train_test_split_ixs(config.train.test_size)
    train_sampler = SubsetRandomSampler(train_ixs)
    test_sampler = SubsetRandomSampler(test_ixs)

    dataloader_fabric = lambda ds, sampler: DataLoader(
예제 #5
0
from datetime import datetime as dt
from tqdm import tqdm
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from tensorboardX import SummaryWriter

from hparams import Hparam
from data.datasets import AudioDataset
from CPC_model.model import CPCModel_NCE

config = Hparam('./CPC_model/config.yaml')
gettime = lambda: str(dt.time(dt.now()))[:8]
if not os.path.isdir('./checkpoints'):
    os.mkdir('./checkpoints')

if __name__ == "__main__":
    writer = SummaryWriter()

    print('Extracting data')
    dataset = AudioDataset(config.data.path)
    train_ixs, test_ixs = dataset.train_test_split_ixs(config.train.test_size)
    train_sampler = SubsetRandomSampler(train_ixs)
    test_sampler = SubsetRandomSampler(test_ixs)

    dataloader_fabric = lambda ds, sampler: DataLoader(
        ds, config.train.batch_size, sampler=sampler, drop_last=True)