예제 #1
0
class TestSpatialPrediction(unittest.TestCase):
    def setUp(self):
        rospy.loginfo("Initializing test for spatial predictions")
        self.model = ImageLocationLearner()

        self.model.load_models("/ros/catkin_ws/src/hrc_discrim_learning/model/spatial_regressors")

    def test_prediction(self):
        features = {
            "location": [1, .2, .2],
            "orientation": [0, 0, 0, 0],
            "description" : "right"
          }


        obj_file = "/ros/catkin_ws/src/hrc_discrim_learning/train/objects.json"
        with open(obj_file, 'r') as f:
            obj_dict = json.load(f)

        all_objs = [Object(x) for id, x in obj_dict.items()]
        context = AdaptiveContext(all_objs)

        for o in all_objs:
            self.assertEqual(o.get_feature_class_value('description'),
                self.model.predict(o, context))
    def setUp(self):
        print()
        print("-----------Testing SGD selection--------------")
        loc_model = ImageLocationLearner()
        loc_model.load_models(
            "/ros/catkin_ws/src/hrc_discrim_learning/model/spatial")

        features_ordered = ['size_relative', 'color', 'material', 'location']
        self.m = SGDPrimeSelector(features_ordered, loc_model, 0, 0)
    def setUp(self):
        print()
        print("-----------Testing FullBrevity selection--------------")
        loc_model = ImageLocationLearner()
        loc_model.load_models(
            "/ros/catkin_ws/src/hrc_discrim_learning/model/spatial")

        rank = ['color', 'material', 'size_relative', 'location']

        self.m = FullBrevSelector(rank, loc_model, 0, 0)
예제 #4
0
    def setUp(self):
        rospy.loginfo("Initializing test for spatial predictions")
        self.model = ImageLocationLearner()

        self.model.load_models("/ros/catkin_ws/src/hrc_discrim_learning/model/spatial_regressors")
# from hrc_discrim_learning.feature_learning import IncrementalLearner
from hrc_discrim_learning.sgd_learner import SGDPrimeSelector
from hrc_discrim_learning.spatial_learning import ImageLocationLearner

# if __name__ == "__main__":
#     spatial_model_dest = rospy.get_param("hrc_discrim_learning/spatial_model")
#     loc_model = ImageLocationLearner()
#     loc_model.load_models(spatial_model_dest)
#
#     feat_learner = IncrementalLearner(loc_model)
#
#     all_learners = [feat_learner]
#
#     t = TrainHarness('train_feature', '/train_input_provider', all_learners, 'feature')
#     t.run_training()

if __name__ == "__main__":
    spatial_model_dest = rospy.get_param("hrc_discrim_learning/spatial_model")
    loc_model = ImageLocationLearner()
    loc_model.load_models(spatial_model_dest)

    rank = ['size_relative', 'color', 'material', 'location']

    feat_learner = SGDPrimeSelector(rank, loc_model, 0, 0)

    all_learners = [feat_learner]

    t = TrainHarness('train_feature', '/train_input_provider', all_learners,
                     'feature')
    t.run_training()
#!/usr/bin/env python
from hrc_discrim_learning.spatial_learning import ImageLocationLearner, ObjectLocationLearner
from hrc_discrim_learning.trainer_common import TrainHarness
import rospy

if __name__ == '__main__':
    l1 = ImageLocationLearner()
    # l2 = ObjectLocationLearner()
    all_learners = [l1]

    t = TrainHarness('train_spatial', '/train_input_provider', all_learners,
                     'spatial')
    t.run_training()