def Knott(m, x, D, rhol, rhog, Cpl=None, kl=None, mu_b=None, mu_w=None, L=None, hl=None): r'''Calculates the two-phase non-boiling heat transfer coefficient of a liquid and gas flowing inside a tube of any inclination, as in [1]_ and reviewed in [2]_. Either a specified `hl` is required, or `Cpl`, `kl`, `mu_b`, `mu_w` and `L` are required to calculate `hl`. .. math:: \frac{h_{TP}}{h_l} = \left(1 + \frac{V_{gs}}{V_{ls}}\right)^{1/3} Parameters ---------- m : float Mass flow rate [kg/s] x : float Quality at the specific tube interval [-] D : float Diameter of the tube [m] rhol : float Density of the liquid [kg/m^3] rhog : float Density of the gas [kg/m^3] Cpl : float, optional Constant-pressure heat capacity of liquid [J/kg/K] kl : float, optional Thermal conductivity of liquid [W/m/K] mu_b : float, optional Viscosity of liquid at bulk conditions (average of inlet/outlet temperature) [Pa*s] mu_w : float, optional Viscosity of liquid at wall temperature [Pa*s] L : float, optional Length of the tube [m] hl : float, optional Liquid-phase heat transfer coefficient as described below, [W/m^2/K] Returns ------- h : float Heat transfer coefficient [W/m^2/K] Notes ----- The liquid-only heat transfer coefficient will be calculated with the `laminar_entry_Seider_Tate` correlation, should it not be provided as an input. Many of the arguments to this function are optional and are only used if `hl` is not provided. `hl` should be calculated with a velocity equal to that determined with a combined volumetric flow of both the liquid and the gas. All other parameters used in calculating the heat transfer coefficient are those of the liquid. If the viscosity at the wall temperature is not given, the liquid viscosity correction in `laminar_entry_Seider_Tate` is not applied. Examples -------- >>> Knott(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6, mu_b=1E-3, ... mu_w=1.2E-3, L=4) 4225.536758045839 References ---------- .. [1] Knott, R. F., R. N. Anderson, Andreas. Acrivos, and E. E. Petersen. "An Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures." Industrial & Engineering Chemistry 51, no. 11 (November 1, 1959): 1369-72. doi:10.1021/ie50599a032. .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L. Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with Seven Sets of Experimental Data, Including Flow Pattern and Tube Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1, 1999): 15-40. doi:10.1080/014576399271691. ''' Vgs = m * x / (rhog * pi / 4 * D**2) Vls = m * (1 - x) / (rhol * pi / 4 * D**2) if not hl: V = Vgs + Vls # Net velocity Re = Reynolds(V=V, D=D, rho=rhol, mu=mu_b) Pr = Prandtl(Cp=Cpl, k=kl, mu=mu_b) Nul = laminar_entry_Seider_Tate(Re=Re, Pr=Pr, L=L, Di=D, mu=mu_b, mu_w=mu_w) hl = Nul * kl / D return hl * (1 + Vgs / Vls)**(1 / 3.)
def Martin_Sims(m, x, D, rhol, rhog, hl=None, Cpl=None, kl=None, mu_b=None, mu_w=None, L=None): r'''Calculates the two-phase non-boiling heat transfer coefficient of a liquid and gas flowing inside a tube of any inclination, as in [1]_ and reviewed in [2]_. .. math:: \frac{h_{TP}}{h_l} = 1 + 0.64\sqrt{\frac{V_{gs}}{V_{ls}}} Parameters ---------- m : float Mass flow rate [kg/s] x : float Quality at the specific tube interval [] D : float Diameter of the tube [m] rhol : float Density of the liquid [kg/m^3] rhog : float Density of the gas [kg/m^3] hl : float, optional Liquid-phase heat transfer coefficient as described below, [W/m^2/K] Cpl : float, optional Constant-pressure heat capacity of liquid [J/kg/K] kl : float, optional Thermal conductivity of liquid [W/m/K] mu_b : float, optional Viscosity of liquid at bulk conditions (average of inlet/outlet temperature) [Pa*s] mu_w : float, optional Viscosity of liquid at wall temperature [Pa*s] L : float, optional Length of the tube [m] Returns ------- h : float Heat transfer coefficient [W/m^2/K] Notes ----- No specific suggestion for how to calculate the liquid-phase heat transfer coefficient is given in [1]_; [2]_ suggests to use the same procedure as in `Knott`. Examples -------- >>> Martin_Sims(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, hl=141.2) 5563.280000000001 >>> Martin_Sims(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6, ... mu_b=1E-3, mu_w=1.2E-3, L=24) 5977.505465781747 References ---------- .. [1] Martin, B. W, and G. E Sims. "Forced Convection Heat Transfer to Water with Air Injection in a Rectangular Duct." International Journal of Heat and Mass Transfer 14, no. 8 (August 1, 1971): 1115-34. doi:10.1016/0017-9310(71)90208-0. .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L. Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with Seven Sets of Experimental Data, Including Flow Pattern and Tube Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1, 1999): 15-40. doi:10.1080/014576399271691. ''' Vgs = m * x / (rhog * pi / 4 * D**2) Vls = m * (1 - x) / (rhol * pi / 4 * D**2) if hl is None: V = Vgs + Vls # Net velocity Re = Reynolds(V=V, D=D, rho=rhol, mu=mu_b) Pr = Prandtl(Cp=Cpl, k=kl, mu=mu_b) Nul = laminar_entry_Seider_Tate(Re=Re, Pr=Pr, L=L, Di=D, mu=mu_b, mu_w=mu_w) hl = Nul * kl / D return hl * (1.0 + 0.64 * (Vgs / Vls)**0.5)
def Knott(m, x, D, rhol, rhog, Cpl=None, kl=None, mu_b=None, mu_w=None, L=None, hl=None): r'''Calculates the two-phase non-boiling heat transfer coefficient of a liquid and gas flowing inside a tube of any inclination, as in [1]_ and reviewed in [2]_. Either a specified `hl` is required, or `Cpl`, `kl`, `mu_b`, `mu_w` and `L` are required to calculate `hl`. .. math:: \frac{h_{TP}}{h_l} = \left(1 + \frac{V_{gs}}{V_{ls}}\right)^{1/3} Parameters ---------- m : float Mass flow rate [kg/s] x : float Quality at the specific tube interval [] D : float Diameter of the tube [m] rhol : float Density of the liquid [kg/m^3] rhog : float Density of the gas [kg/m^3] Cpl : float, optional Constant-pressure heat capacity of liquid [J/kg/K] kl : float, optional Thermal conductivity of liquid [W/m/K] mu_b : float, optional Viscosity of liquid at bulk conditions (average of inlet/outlet temperature) [Pa*s] mu_w : float, optional Viscosity of liquid at wall temperature [Pa*s] L : float, optional Length of the tube [m] hl : float, optional Liquid-phase heat transfer coefficient as described below, [W/m^2/K] Returns ------- h : float Heat transfer coefficient [W/m^2/K] Notes ----- The liquid-only heat transfer coefficient will be calculated with the `laminar_entry_Seider_Tate` correlation, should it not be provided as an input. Many of the arguments to this function are optional and are only used if `hl` is not provided. `hl` should be calculated with a velocity equal to that determined with a combined volumetric flow of both the liquid and the gas. All other parameters used in calculating the heat transfer coefficient are those of the liquid. If the viscosity at the wall temperature is not given, the liquid viscosity correction in `laminar_entry_Seider_Tate` is not applied. Examples -------- >>> Knott(m=1, x=.9, D=.3, rhol=1000, rhog=2.5, Cpl=2300, kl=.6, mu_b=1E-3, ... mu_w=1.2E-3, L=4) 4225.536758045839 References ---------- .. [1] Knott, R. F., R. N. Anderson, Andreas. Acrivos, and E. E. Petersen. "An Experimental Study of Heat Transfer to Nitrogen-Oil Mixtures." Industrial & Engineering Chemistry 51, no. 11 (November 1, 1959): 1369-72. doi:10.1021/ie50599a032. .. [2] Dongwoo Kim, Venkata K. Ryali, Afshin J. Ghajar, Ronald L. Dougherty. "Comparison of 20 Two-Phase Heat Transfer Correlations with Seven Sets of Experimental Data, Including Flow Pattern and Tube Inclination Effects." Heat Transfer Engineering 20, no. 1 (February 1, 1999): 15-40. doi:10.1080/014576399271691. ''' Vgs = m*x/(rhog*pi/4*D**2) Vls = m*(1-x)/(rhol*pi/4*D**2) if not hl: V = Vgs + Vls # Net velocity Re = Reynolds(V=V, D=D, rho=rhol, mu=mu_b) Pr = Prandtl(Cp=Cpl, k=kl, mu=mu_b) Nul = laminar_entry_Seider_Tate(Re=Re, Pr=Pr, L=L, Di=D, mu=mu_b, mu_w=mu_w) hl = Nul*kl/D return hl*(1 + Vgs/Vls)**(1/3.)