def testGetParameters(self): """ A test of the getParameters( ) and getParameterJSON() functions. """ expected = """{ "activeBits": 200, "category": false, "noise": 0.010000, "radius": 0.030000, "resolution": 0.000150, "seed": 2019, "sensedValue": 0.000000, "size": 1000, "sparsity": 0.200000 }""" net = Network() encoder = net.addRegion( "encoder", "RDSEEncoderRegion", "{size: 1000, sparsity: 0.2, radius: 0.03, seed: 2019, noise: 0.01}" ) json_str = encoder.getParameters() self.assertEqual(json_str, expected) json.loads(json_str) # test if json package can load it json_str = encoder.getParameterJSON("activeBits", False) self.assertEqual(json_str, "200") json_str = encoder.getParameterJSON("activeBits", True) self.assertEqual(json_str, "{\"value\": 200, \"type\": \"UInt32\"}")
def testSPRegionIsCreatable(self): """ Test that the SPRegion can be created in Python. """ net = Network() # Create simple region to pass sensor commands as displacement vectors (dx, dy) sp = net.addRegion("sp", "SPRegion", json.dumps({}))
def testSPRegionParametersAreWritable(self): """ Test that the SPRegion parameters can be set. """ net = Network() # Create simple region to pass sensor commands as displacement vectors (dx, dy) sp = net.addRegion("sp", "SPRegion", json.dumps(spParams))
def testGetSpec(self): """ Test of region.getSpec() function. Testing if pybind pointers are correctly handled """ net = Network() dateRegion = net.addRegion( 'dateEncoder', 'DateEncoderRegion', str(dict(timeOfDay_width=30, timeOfDay_radius=1, weekend_width=21))) dateRegion.getSpec() # twice times to check if no double free arises dateRegion.getSpec()
def registerAdvancedRegion(regionTypeName, moduleName=None): """ Register this region so that NuPIC can later find it. @param regionTypeName: (str) type name of the region. E.g LanguageSensor. @param moduleName: (str) location of the region class, only needed if registering a region that is outside the expected "regions/" dir. """ if moduleName is None: # the region is located in the regions/ directory moduleName = "htm.advanced.regions." + regionTypeName # Add new region class to the network. module = __import__(moduleName, {},{}, [regionTypeName], 0) Network.registerPyRegion(module.__name__, regionTypeName)
def __init__(self, numColumns, L2Params, L4Params, L6aParams, repeat, logCalls=False): """ Create a network consisting of multiple columns. Each column contains one L2, one L4 and one L6a layers. In addition all the L2 columns are fully connected to each other through their lateral inputs. :param numColumns: Number of columns to create :type numColumns: int :param L2Params: constructor parameters for :class:`ColumnPoolerRegion` :type L2Params: dict :param L4Params: constructor parameters for :class:`ApicalTMPairRegion` :type L4Params: dict :param L6aParams: constructor parameters for :class:`GridCellLocationRegion` :type L6aParams: dict :param repeat: Number of times each pair should be seen to be learned :type repeat: int :param logCalls: If true, calls to main functions will be logged internally. The log can then be saved with saveLogs(). This allows us to recreate the complete network behavior using rerunExperimentFromLogfile which is very useful for debugging. :type logCalls: bool """ # Handle logging - this has to be done first self.logCalls = logCalls self.numColumns = numColumns self.repeat = repeat network = Network() self.network = createMultipleL246aLocationColumn(network=network, numberOfColumns=self.numColumns, L2Params=L2Params, L4Params=L4Params, L6aParams=L6aParams) network.initialize() self.sensorInput = [] self.motorInput = [] self.L2Regions = [] self.L4Regions = [] self.L6aRegions = [] for i in range(self.numColumns): col = str(i) self.sensorInput.append(network.getRegion("sensorInput_" + col)) self.motorInput.append(network.getRegion("motorInput_" + col)) self.L2Regions.append(network.getRegion("L2_" + col)) self.L4Regions.append(network.getRegion("L4_" + col)) self.L6aRegions.append(network.getRegion("L6a_" + col)) if L6aParams is not None and "dimensions" in L6aParams: self.dimensions = L6aParams["dimensions"] else: self.dimensions = 2 self.sdrSize = L2Params["sdrSize"] # will be populated during training self.learnedObjects = {}
def _create_network(self, L4Params, L6aParams): """ Constructor. """ network = Network() # Create network network = createL4L6aLocationColumn(network=network, L4Params=L4Params, L6aParams=L6aParams, inverseReadoutResolution=None, baselineCellsPerAxis=6, suffix="") network.initialize() return network
def testEmptyQueue(self): """ Test that RawValues detects empty queue. """ net = Network() # Create simple region to pass motor commands as displacement vectors (dx, dy) motor = net.addRegion("motor", "py.RawValues", json.dumps({"outputWidth": 2})) try: net.run(1) output = list(np.array(motor.getOutputArray("dataOut"))) self.assertEqual([0, 0], output) self.fail("Empty queue should throw exception") except: pass
def testExecuteCommandList(self): """ Test that execute command executes the correct command with a list. """ net = Network() # Create simple region to pass motor commands as displacement vectors (dx, dy) motor = net.addRegion("motor", "py.RawValues", json.dumps({"outputWidth": 2})) motor.executeCommand('addDataToQueue', [0, 0]) net.run(1) output = list(np.array(motor.getOutputArray("dataOut"))) self.assertEqual([0, 0], output) output = list(np.array(motor.getOutputArray("resetOut"))) self.assertEqual([False], output)
def testExecuteCommandListWithReset(self): """ Test that execute command executes the correct command with a list and reset set. """ net = Network() # Create simple region to pass sensor commands as displacement vectors (dx, dy) sensor = net.addRegion("sensor", "py.RawSensor", json.dumps({"outputWidth": 8})) sensor.executeCommand('addDataToQueue', [0, 1], 1, 0) net.run(1) output = list(np.array(sensor.getOutputArray("dataOut"))) self.assertEqual([1, 1, 0, 0, 0, 0, 0, 0], output) output = list(np.array(sensor.getOutputArray("resetOut"))) self.assertEqual([True], output)
def testNetwork(self): """ A simple NetworkAPI example with three regions. /////////////////////////////////////////////////////////////// // // .------------------. // | encoder | // sinewave data--->|(RDSEEncoderRegion)| // | | // `-------------------' // | // .-----------------. // | sp | // | (SPRegion) | // | | // `-----------------' // | // .-----------------. // | tm | // | (TMRegion) |---->anomaly score // | | // `-----------------' // ////////////////////////////////////////////////////////////////// """ """ Creating network instance. """ config = """ {network: [ {addRegion: {name: "encoder", type: "RDSEEncoderRegion", params: {size: 1000, sparsity: 0.2, radius: 0.03, seed: 2019, noise: 0.01}}}, {addRegion: {name: "sp", type: "SPRegion", params: {columnCount: 2048, globalInhibition: true}}}, {addRegion: {name: "tm", type: "TMRegion", params: {cellsPerColumn: 8, orColumnOutputs: true}}}, {addLink: {src: "encoder.encoded", dest: "sp.bottomUpIn"}}, {addLink: {src: "sp.bottomUpOut", dest: "tm.bottomUpIn"}} ]}""" net = Network() net.configure(config) # iterate EPOCHS times x = 0.00 for e in range(EPOCHS): # Data is a sine wave, (Note: first iteration is for x=0.01, not 0) x += 0.01 # advance one step, 0.01 radians s = math.sin(x) # compute current sine as data. # feed data to RDSE encoder via its "sensedValue" parameter. net.getRegion('encoder').setParameterReal64('sensedValue', s) net.run(1) # Execute one iteration of the Network object # Retreive the final anomaly score from the TM object's 'anomaly' output. (as a single element numpy array) score = np.array(net.getRegion('tm').getOutputArray('anomaly')) self.assertEqual(score, [1])
def testGetParametersCustomRegions(self): Network.cleanup() # removes all previous registrations registerAllAdvancedRegions() json_list = Network.getRegistrations() #print(json_list) y = json.loads(json_list) self.assertTrue("py.ColumnPoolerRegion" in y) net = Network() #print(net.getSpecJSON("py.ColumnPoolerRegion")) cp = net.addRegion( "py.ColumnPoolerRegion", "py.ColumnPoolerRegion", """{ "activationThresholdDistal": 20, "cellCount": 4096, "connectedPermanenceDistal": 0.5, "connectedPermanenceProximal": 0.5, "initialDistalPermanence": 0.51, "initialProximalPermanence": 0.6, "minThresholdProximal": 5, "sampleSizeDistal": 30, "sampleSizeProximal": 10, "sdrSize": 40, "synPermDistalDec": 0.001, "synPermDistalInc": 0.1, "synPermProximalDec": 0.001, "synPermProximalInc": 0.1 }""") # expected results from getParameters() (in Spec order) expected = """{ "learningMode": true, "onlineLearning": false, "cellCount": 4096, "inputWidth": 16384, "numOtherCorticalColumns": 0, "sdrSize": 40, "maxSdrSize": 0, "minSdrSize": 0, "synPermProximalInc": 0.100000, "synPermProximalDec": 0.001000, "initialProximalPermanence": 0.600000, "sampleSizeProximal": 10, "minThresholdProximal": 5, "connectedPermanenceProximal": 0.500000, "predictedInhibitionThreshold": 20.000000, "synPermDistalInc": 0.100000, "synPermDistalDec": 0.001000, "initialDistalPermanence": 0.510000, "sampleSizeDistal": 30, "activationThresholdDistal": 20, "connectedPermanenceDistal": 0.500000, "inertiaFactor": 1.000000, "seed": 42, "defaultOutputType": "active" }""" json_list = cp.getParameters() #print(json_list) self.assertEqual(json_list, expected)
def testOverlap(self): """Create a simple network to test the region.""" rawParams = {"outputWidth": 8 * 2048} net = Network() rawSensor = net.addRegion("raw", "py.RawSensor", json.dumps(rawParams)) l2c = net.addRegion("L2", "py.ColumnPoolerRegion", "") net.link("raw", "L2", "UniformLink", "") self.assertEqual(rawSensor.getParameterUInt32("outputWidth"), l2c.getParameterUInt32("inputWidth"), "Incorrect outputWidth parameter") rawSensor.executeCommand('addDataToQueue', [2, 4, 6], 0, 42) rawSensor.executeCommand('addDataToQueue', [2, 42, 1023], 1, 43) rawSensor.executeCommand('addDataToQueue', [18, 19, 20], 0, 44) # Run the network and check outputs are as expected net.run(3)
def testSequence(self): """ Test that RawSensor executes correctly. """ net = Network() # Create simple region to pass sensor commands as displacement vectors (dx, dy) sensor = net.addRegion("sensor", "py.RawSensor", json.dumps({"outputWidth": 8})) sensor.executeCommand('addDataToQueue', [0, 1], 1, 0) sensor.executeCommand('addDataToQueue', [1, 2], 0, 1) sensor.executeCommand('addDataToQueue', [2, 3], 0, 2) net.run(1) output = list(np.array(sensor.getOutputArray("dataOut"))) self.assertEqual([1, 1, 0, 0, 0, 0, 0, 0], output) output = list(np.array(sensor.getOutputArray("resetOut"))) self.assertEqual([True], output) output = list(np.array(sensor.getOutputArray("sequenceIdOut"))) self.assertEqual([0], output) net.run(1) output = list(np.array(sensor.getOutputArray("dataOut"))) self.assertEqual([0, 1, 1, 0, 0, 0, 0, 0], output) output = list(np.array(sensor.getOutputArray("resetOut"))) self.assertEqual([False], output) output = list(np.array(sensor.getOutputArray("sequenceIdOut"))) self.assertEqual([1], output) net.run(1) output = list(np.array(sensor.getOutputArray("dataOut"))) self.assertEqual([0, 0, 1, 1, 0, 0, 0, 0], output) output = list(np.array(sensor.getOutputArray("resetOut"))) self.assertEqual([False], output) output = list(np.array(sensor.getOutputArray("sequenceIdOut"))) self.assertEqual([2], output)
def testGetParametersGridCell(self): # a test of arrays in parameters Network.cleanup() # removes all previous registrations registerAllAdvancedRegions() json_list = Network.getRegistrations() #print(json_list) y = json.loads(json_list) self.assertTrue("py.GridCellLocationRegion" in y) # only provide one orentation to shorten the test. Full test in location_region_test.py net = Network() #print(net.getSpecJSON("py.GridCellLocationRegion")) cp = net.addRegion( "grid", "py.GridCellLocationRegion", """{ "moduleCount": 1, "cellsPerAxis": 10, "scale": [1], "orientation": [0.5], "anchorInputSize": 1, "activeFiringRate": 10 }""") # expected results from getParameters() (in Spec order) expected = """{ "moduleCount": 1, "cellsPerAxis": 10, "scale": [1], "orientation": [0.5], "anchorInputSize": 1, "activeFiringRate": 10.000000, "bumpSigma": 0.181720, "activationThreshold": 10, "initialPermanence": 0.210000, "connectedPermanence": 0.500000, "learningThreshold": 10, "sampleSize": 20, "permanenceIncrement": 0.100000, "permanenceDecrement": 0.000000, "maxSynapsesPerSegment": -1, "bumpOverlapMethod": "probabilistic", "learningMode": false, "dualPhase": true, "dimensions": 2, "seed": 42 }""" json_list = cp.getParameters() #print(json_list) self.assertEqual(json_list, expected)
def testCreateL4L6aLocationColumn(self): """ Test 'createL4L6aLocationColumn' by inferring a set of hand crafted objects """ scale = [] orientation = [] # Initialize L6a location region with 5 modules varying scale by sqrt(2) and # 4 different random orientations for each scale for i in range(5): for _ in range(4): angle = np.radians(random.gauss(7.5, 7.5)) orientation.append(random.choice([angle, -angle])) scale.append(10.0 * (math.sqrt(2)**i)) net = Network() createL4L6aLocationColumn(net, L4Params={ "columnCount": NUM_OF_COLUMNS, "cellsPerColumn": CELLS_PER_COLUMN, "activationThreshold": 15, "minThreshold": 15, "initialPermanence": 1.0, "implementation": "ApicalTiebreak", "maxSynapsesPerSegment": -1 }, L6aParams={ "moduleCount": len(scale), "scale": scale, "orientation": orientation, "anchorInputSize": NUM_OF_CELLS, "activationThreshold": 8, "initialPermanence": 1.0, "connectedPermanence": 0.5, "learningThreshold": 8, "sampleSize": 10, "permanenceIncrement": 0.1, "permanenceDecrement": 0.0, "bumpOverlapMethod": "probabilistic" }, inverseReadoutResolution=8) net.initialize() L6a = net.getRegion('L6a') sensor = net.getRegion('sensorInput') motor = net.getRegion('motorInput') # Keeps a list of learned objects learnedRepresentations = defaultdict(list) # Learn Objects self._setLearning(net, True) for objectDescription in OBJECTS: reset = True previousLocation = None L6a.executeCommand("activateRandomLocation") for iFeature, feature in enumerate(objectDescription["features"]): # Move the sensor to the center of the object locationOnObject = np.array([ feature["top"] + feature["height"] / 2., feature["left"] + feature["width"] / 2. ]) # Calculate displacement from previous location if previousLocation is not None: motor.executeCommand( 'addDataToQueue', list(locationOnObject - previousLocation)) else: motor.executeCommand('addDataToQueue', [0, 0]) previousLocation = locationOnObject # Sense feature at location sensor.executeCommand('addDataToQueue', FEATURE_ACTIVE_COLUMNS[feature["name"]], reset, 0) net.run(1) reset = False # Save learned representations representation = L6a.getOutputArray("sensoryAssociatedCells") representation = np.array(representation).nonzero()[0] learnedRepresentations[(objectDescription["name"], iFeature)] = representation # Infer objects self._setLearning(net, False) for objectDescription in OBJECTS: reset = True previousLocation = None inferred = False features = objectDescription["features"] touchSequence = list(range(len(features))) random.shuffle(touchSequence) for iFeature in touchSequence: feature = features[iFeature] # Move the sensor to the center of the object locationOnObject = np.array([ feature["top"] + feature["height"] / 2., feature["left"] + feature["width"] / 2. ]) # Calculate displacement from previous location if previousLocation is not None: motor.executeCommand('addDataToQueue', locationOnObject - previousLocation) else: motor.executeCommand('addDataToQueue', [0, 0]) previousLocation = locationOnObject # Sense feature at location sensor.executeCommand('addDataToQueue', FEATURE_ACTIVE_COLUMNS[feature["name"]], reset, 0) net.run(1) reset = False representation = L6a.getOutputArray("sensoryAssociatedCells") representation = np.array(representation).nonzero()[0] target_representations = set( learnedRepresentations[(objectDescription["name"], iFeature)]) inferred = (set(representation) <= target_representations) if inferred: break self.assertTrue(inferred)
def _createNetwork(inverseReadoutResolution, anchorInputSize, dualPhase=False): """ Create a simple network connecting sensor and motor inputs to the location region. Use :meth:`RawSensor.addDataToQueue` to add sensor input and growth candidates. Use :meth:`RawValues.addDataToQueue` to add motor input. :: +----------+ [ sensor* ] --> | | --> [ activeCells ] [ candidates* ] --> | location | --> [ learnableCells ] [ motor ] --> | | --> [ sensoryAssociatedCells ] +----------+ :param inverseReadoutResolution: Specifies the diameter of the circle of phases in the rhombus encoded by a bump. :type inverseReadoutResolution: int :type anchorInputSize: int :param anchorInputSize: The number of input bits in the anchor input. .. note:: (*) This function will only add the 'sensor' and 'candidates' regions when 'anchorInputSize' is greater than zero. This is useful if you would like to compute locations ignoring sensor input .. seealso:: - :py:func:`htmresearch.frameworks.location.path_integration_union_narrowing.createRatModuleFromReadoutResolution` """ net = Network() # Create simple region to pass motor commands as displacement vectors (dx, dy) net.addRegion("motor", "py.RawValues", json.dumps({"outputWidth": 2})) if anchorInputSize > 0: # Create simple region to pass growth candidates net.addRegion("candidates", "py.RawSensor", json.dumps({"outputWidth": anchorInputSize})) # Create simple region to pass sensor input net.addRegion("sensor", "py.RawSensor", json.dumps({"outputWidth": anchorInputSize})) # Initialize region with 5 modules varying scale by sqrt(2) and 4 different # random orientations for each scale scale = [] orientation = [] for i in range(5): for _ in range(4): angle = np.radians(random.gauss(7.5, 7.5)) orientation.append(random.choice([angle, -angle])) scale.append(10.0 * (math.sqrt(2)**i)) # Create location region params = computeRatModuleParametersFromReadoutResolution( inverseReadoutResolution) params.update({ "moduleCount": len(scale), "scale": scale, "orientation": orientation, "anchorInputSize": anchorInputSize, "activationThreshold": 8, "initialPermanence": 1.0, "connectedPermanence": 0.5, "learningThreshold": 8, "sampleSize": 10, "permanenceIncrement": 0.1, "permanenceDecrement": 0.0, "dualPhase": dualPhase, "bumpOverlapMethod": "probabilistic" }) net.addRegion("location", "py.GridCellLocationRegion", json.dumps(params)) if anchorInputSize > 0: # Link sensor net.link("sensor", "location", "UniformLink", "", srcOutput="dataOut", destInput="anchorInput") net.link("sensor", "location", "UniformLink", "", srcOutput="resetOut", destInput="resetIn") net.link("candidates", "location", "UniformLink", "", srcOutput="dataOut", destInput="anchorGrowthCandidates") # Link motor input net.link("motor", "location", "UniformLink", "", srcOutput="dataOut", destInput="displacement") # Initialize network objects net.initialize() return net
def testRun(self): """ A simple NetworkAPI example with three regions. /////////////////////////////////////////////////////////////// // // .------------------. // | encoder | // |(RDSEEncoderRegion)|<------ inital input // | | (INPUT.begin) // `-------------------' // | --------------. sp.bottomUpIn // |/ | // .-----------------. | // | sp | | // | (SPRegion) | | // | | | // `-----------------' | // | ^ // .-----------------. | // | tm | | // | (TMRegion) |-----' (tm.bottomUpOut) // | | // `-----------------' // ////////////////////////////////////////////////////////////////// """ """ Creating network instance. """ config = """ {network: [ {addRegion: {name: "encoder", type: "RDSEEncoderRegion", params: {size: 1000, sparsity: 0.2, radius: 0.03, seed: 2019, noise: 0.01}, phase: [1]}}, {addRegion: {name: "sp", type: "SPRegion", params: {columnCount: 1000, globalInhibition: true}, phase: [2]}}, {addRegion: {name: "tm", type: "TMRegion", params: {cellsPerColumn: 8, orColumnOutputs: true}, phase: [2]}}, {addLink: {src: "INPUT.begin", dest: "encoder.values", dim: [1]}}, {addLink: {src: "encoder.encoded", dest: "sp.bottomUpIn", mode: "overwrite"}}, {addLink: {src: "sp.bottomUpOut", dest: "tm.bottomUpIn"}}, {addLink: {src: "tm.bottomUpOut", dest: "sp.bottomUpIn"}} ]}""" net = Network() net.configure(config) net.initialize() # for debugging: print(net.getExecutionMap()) """ Force initial data. """ net.setInputData("begin", np.array([10])) """ Execute encoder once, the loop (sp and tm) 4 times """ net.run(1, [1]) # execute initial entry (phase 1) net.run(4, [2]) # execute loop 4 times (phase 2) # Here is how you access the buffers sp_input_buffer = np.array(net.getRegion('sp').getInputArray('bottomUpIn')) tn_output_buffer = np.array(net.getRegion('tm').getOutputArray('bottomUpOut')) self.assertEqual(sp_input_buffer.size, tn_output_buffer.size)
from htm.bindings.engine_internal import Network from htm.advanced.support.register_regions import registerAllAdvancedRegions registerAllAdvancedRegions() """ Creating network instance. """ config = """ {network: [ {addRegion: {name: "encoder", type: "RDSEEncoderRegion", params: {size: 1000, sparsity: 0.2, radius: 0.03, seed: 2019, noise: 0.01}}}, {addRegion: {name: "sp", type: "SPRegion", params: {columnCount: 2048, globalInhibition: true}}}, {addRegion: {name: "tm", type: "TMRegion", params: {cellsPerColumn: 8, orColumnOutputs: true}}}, {addRegion: {name: "apicalTM", type: "py.ApicalTMPairRegion", params: {columnCount : 2048, basalInputWidth : 10, cellsPerColumn: 8, implementation: ApicalTiebreak}}}, {addLink: {src: "encoder.encoded", dest: "sp.bottomUpIn"}}, {addLink: {src: "sp.bottomUpOut", dest: "tm.bottomUpIn"}}, {addLink: {src: "sp.bottomUpOut", dest: "apicalTM.activeColumns"}} ]}""" net = Network() net.configure(config) # feed data to RDSE encoder via its "sensedValue" parameter. net.getRegion('encoder').setParameterReal64('sensedValue', 100) net.run(10) # Execute iteration of the Network object print(net.getRegion('tm')) print(net.getRegion('apicalTM')) print(net.getRegion('tm').getConnections( "")) # can be called because of this draft PR print( net.getRegion('apicalTM').getConnections("") ) # returns always None, it is region implemented in python, but it has not override getConnections
def main(parameters=default_parameters, argv=None, verbose=True): if verbose: import pprint print("Parameters:") pprint.pprint(parameters, indent=4) print("") # Read the input file. records = [] with open(_INPUT_FILE_PATH, "r") as fin: reader = csv.reader(fin) headers = next(reader) next(reader) next(reader) for record in reader: records.append(record) net = Network() # Make the Encoders. These will convert input data into binary representations. dateEncoderRegion = net.addRegion( 'dateEncoder', 'DateEncoderRegion', str( dict(timeOfDay_width=parameters["enc"]["time"]["timeOfDay"][0], timeOfDay_radius=parameters["enc"]["time"]["timeOfDay"][1], weekend_width=parameters["enc"]["time"]["weekend"]))) valueEncoderRegion = net.addRegion( 'valueEncoder', 'RDSEEncoderRegion', str( dict(size=parameters["enc"]["value"]["size"], sparsity=parameters["enc"]["value"]["sparsity"], resolution=parameters["enc"]["value"]["resolution"]))) # Make the HTM. SpatialPooler & TemporalMemory & associated tools. spParams = parameters["sp"] spRegion = net.addRegion( 'sp', 'SPRegion', str( dict( columnCount=spParams['columnCount'], potentialPct=spParams["potentialPct"], potentialRadius=0, # 0 is auto assign as inputWith globalInhibition=True, localAreaDensity=spParams["localAreaDensity"], synPermInactiveDec=spParams["synPermInactiveDec"], synPermActiveInc=spParams["synPermActiveInc"], synPermConnected=spParams["synPermConnected"], boostStrength=spParams["boostStrength"], wrapAround=True))) tmParams = parameters["tm"] tmRegion = net.addRegion( 'tm', 'TMRegion', str( dict(columnCount=spParams['columnCount'], cellsPerColumn=tmParams["cellsPerColumn"], activationThreshold=tmParams["activationThreshold"], initialPermanence=tmParams["initialPerm"], connectedPermanence=spParams["synPermConnected"], minThreshold=tmParams["minThreshold"], maxNewSynapseCount=tmParams["newSynapseCount"], permanenceIncrement=tmParams["permanenceInc"], permanenceDecrement=tmParams["permanenceDec"], predictedSegmentDecrement=0.0, maxSegmentsPerCell=tmParams["maxSegmentsPerCell"], maxSynapsesPerSegment=tmParams["maxSynapsesPerSegment"]))) net.link('dateEncoder', 'sp', '', '', 'encoded', 'bottomUpIn') net.link('valueEncoder', 'sp', '', '', 'encoded', 'bottomUpIn') net.link('sp', 'tm', '', '', 'bottomUpOut', 'bottomUpIn') net.initialize() # Iterate through every datum in the dataset, record the inputs & outputs. inputs = [] anomaly = [] for count, record in enumerate(records): # Convert date string into Python date object. dateString = datetime.datetime.strptime(record[0], "%m/%d/%y %H:%M") # Convert data value string into float. consumption = float(record[1]) inputs.append(consumption) # Call the encoders to create bit representations for each value. These are SDR objects. dateEncoderRegion.setParameterInt64('sensedTime', int(dateString.timestamp())) valueEncoderRegion.setParameterReal64('sensedValue', consumption) net.run(1) anomaly.append(np.array(tmRegion.getOutputArray("anomaly"))[0]) try: import matplotlib.pyplot as plt except: print("WARNING: failed to import matplotlib, plots cannot be shown.") return plt.title("Anomaly Score") plt.xlabel("Time") plt.ylabel("Power Consumption") inputs = np.array(inputs) / max(inputs) plt.plot( np.arange(len(inputs)), inputs, 'red', np.arange(len(inputs)), anomaly, 'blue', ) plt.legend(labels=('Input', 'Anomaly Score')) plt.show() return
def testGetSpec(self): """ A test of the Network.getSpecJSON( ) function. """ expected = """{"spec": "RDSEEncoderRegion", "parameters": { "activeBits": { "type": "UInt32", "count": 1, "access": "Create", "defaultValue": "0" }, "category": { "type": "Bool", "count": 1, "access": "Create", "defaultValue": "false" }, "noise": { "description": "amount of noise to add to the output SDR. 0.01 is 1%", "type": "Real32", "count": 1, "access": "ReadWrite", "defaultValue": "0.0" }, "radius": { "type": "Real32", "count": 1, "access": "Create", "defaultValue": "0.0" }, "resolution": { "type": "Real32", "count": 1, "access": "Create", "defaultValue": "0.0" }, "seed": { "type": "UInt32", "count": 1, "access": "Create", "defaultValue": "0" }, "sensedValue": { "description": "The value to encode. Overriden by input 'values'.", "type": "Real64", "count": 1, "access": "ReadWrite", "defaultValue": "0.0" }, "size": { "type": "UInt32", "count": 1, "access": "Create", "defaultValue": "0" }, "sparsity": { "type": "Real32", "count": 1, "access": "Create", "defaultValue": "0.0" } }, "inputs": { "values": { "description": "Values to encode. Overrides sensedValue.", "type": "Real64", "count": 1, "required": 0, "regionLevel": 1, "isDefaultInput": 1 } }, "outputs": { "bucket": { "description": "Quantized sample based on the radius. Becomes the title for this sample in Classifier.", "type": "Real64", "count": 1, "regionLevel": 0, "isDefaultOutput": 0 }, "encoded": { "description": "Encoded bits. Not a true Sparse Data Representation (SP does that).", "type": "SDR", "count": 0, "regionLevel": 1, "isDefaultOutput": 1 } } }""" net = Network() json_str = net.getSpecJSON("RDSEEncoderRegion") self.assertEqual(json_str, expected)