예제 #1
1
파일: project.py 프로젝트: adbmd/autonlp
    def upload(self, filepaths: List[str], split: str, col_mapping: Dict[str, str]):
        """Uploads files to the project"""
        local_dataset_dir = os.path.expanduser(f"~/.huggingface/autonlp/projects/{self.dataset_id}")
        if os.path.exists(local_dataset_dir):
            if os.path.isdir(os.path.join(local_dataset_dir, "git")):
                clone_from = None
            else:
                shutil.rmtree(local_dataset_dir)
                clone_from = "https://huggingface.co/datasets/" + self.dataset_id
        else:
            clone_from = "https://huggingface.co/datasets/" + self.dataset_id
        dataset_repo = Repository(
            local_dir=local_dataset_dir,
            clone_from=clone_from,
            use_auth_token=self._token,
        )
        dataset_repo.git_pull()

        for idx, file_path in enumerate(filepaths):
            if not os.path.isfile(file_path):
                logger.error(f"[{idx + 1}/{len(filepaths)}] ❌ '{file_path}' does not exist or is not a file!")
                continue
            file_name = os.path.basename(file_path)
            file_extension = file_name.split(".")[-1]
            src = os.path.expanduser(file_path)
            dst = os.path.join(local_dataset_dir, "raw", file_name)
            logger.info(f"[{idx + 1}/{len(filepaths)}] 📦 Copying {src} to {dst}...")
            os.makedirs(os.path.dirname(dst), exist_ok=True)
            shutil.copyfile(src, dst)

            logger.info(f"[{idx + 1}/{len(filepaths)}] 🔎 Validating {dst} and column mapping...")
            validate_file(path=dst, task=self.task, file_ext=file_extension, col_mapping=col_mapping)

            dataset_repo.lfs_track(patterns=[f"raw/*.{file_extension}"])

        dataset_repo.git_pull()

        try:
            logger.info("☁ Uploading files to the dataset hub...")
            dataset_repo.push_to_hub(commit_message="Upload from AutoNLP CLI")
            logger.info("✅ Successfully uploaded  the files!")
        except OSError as err:
            if "nothing to commit, working tree clean" in err.args[0]:
                logger.info("❔ Files did not change since last upload!")
                dataset_repo.git_push()
                return
            logger.error("❌ Something went wrong when uploading the files!")
            raise

        for idx, file_path in enumerate(filepaths):
            file_name = os.path.basename(file_path)
            logger.info(f"[{idx + 1}/{len(filepaths)}] 📁 Registering file {file_name} into project '{file_name}'...")
            payload = {
                "split": split,
                "col_mapping": col_mapping,
                "data_files": [{"fname": file_name, "username": self.user}],
            }
            http_post(path=f"/projects/{self.proj_id}/data/add", payload=payload, token=self._token)
            logger.info(f"[{idx + 1}/{len(filepaths)}] ✅ Success!")
예제 #2
0
    def save_to_hub(self,
                    repo_name: str,
                    organization: Optional[str] = None,
                    private: Optional[bool] = None,
                    commit_message: str = "Add new SentenceTransformer model.",
                    local_model_path: Optional[str] = None,
                    exist_ok: bool = False,
                    replace_model_card: bool = False):
        """
        Uploads all elements of this Sentence Transformer to a new HuggingFace Hub repository.

        :param repo_name: Repository name for your model in the Hub.
        :param organization:  Organization in which you want to push your model or tokenizer (you must be a member of this organization).
        :param private: Set to true, for hosting a prive model
        :param commit_message: Message to commit while pushing.
        :param local_model_path: Path of the model locally. If set, this file path will be uploaded. Otherwise, the current model will be uploaded
        :param exist_ok: If true, saving to an existing repository is OK. If false, saving only to a new repository is possible
        :param replace_model_card: If true, replace an existing model card in the hub with the automatically created model card
        :return: The url of the commit of your model in the given repository.
        """
        token = HfFolder.get_token()
        if token is None:
            raise ValueError(
                "You must login to the Hugging Face hub on this computer by typing `transformers-cli login`."
            )

        if '/' in repo_name:
            splits = repo_name.split('/', maxsplit=1)
            if organization is None or organization == splits[0]:
                organization = splits[0]
                repo_name = splits[1]
            else:
                raise ValueError(
                    "You passed and invalid repository name: {}.".format(
                        repo_name))

        endpoint = "https://huggingface.co"
        repo_url = HfApi(endpoint=endpoint).create_repo(
            token,
            repo_name,
            organization=organization,
            private=private,
            repo_type=None,
            exist_ok=exist_ok,
        )
        full_model_name = repo_url[len(endpoint) + 1:].strip("/")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # First create the repo (and clone its content if it's nonempty).
            logging.info("Create repository and clone it if it exists")
            repo = Repository(tmp_dir, clone_from=repo_url)

            # If user provides local files, copy them.
            if local_model_path:
                copy_tree(local_model_path, tmp_dir)
            else:  # Else, save model directly into local repo.
                create_model_card = replace_model_card or not os.path.exists(
                    os.path.join(tmp_dir, 'README.md'))
                self.save(tmp_dir,
                          model_name=full_model_name,
                          create_model_card=create_model_card)

            #Find files larger 5M and track with git-lfs
            large_files = []
            for root, dirs, files in os.walk(tmp_dir):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    rel_path = os.path.relpath(file_path, tmp_dir)

                    if os.path.getsize(file_path) > (5 * 1024 * 1024):
                        large_files.append(rel_path)

            if len(large_files) > 0:
                logging.info("Track files with git lfs: {}".format(
                    ", ".join(large_files)))
                repo.lfs_track(large_files)

            logging.info("Push model to the hub. This might take a while")
            push_return = repo.push_to_hub(commit_message=commit_message)

            def on_rm_error(func, path, exc_info):
                # path contains the path of the file that couldn't be removed
                # let's just assume that it's read-only and unlink it.
                try:
                    os.chmod(path, stat.S_IWRITE)
                    os.unlink(path)
                except:
                    pass

            # Remove .git folder. On Windows, the .git folder might be read-only and cannot be deleted
            # Hence, try to set write permissions on error
            try:
                for f in os.listdir(tmp_dir):
                    shutil.rmtree(os.path.join(tmp_dir, f),
                                  onerror=on_rm_error)
            except Exception as e:
                logging.warning("Error when deleting temp folder: {}".format(
                    str(e)))
                pass

        return push_return
예제 #3
0
def push_to_hf(
    repo_name: str,
    serialization_dir: Optional[Union[str, PathLike]] = None,
    archive_path: Optional[Union[str, PathLike]] = None,
    organization: Optional[str] = None,
    commit_message: str = "Update repository",
    local_repo_path: Union[str, PathLike] = "hub",
    use_auth_token: Union[bool, str] = True,
) -> str:
    """Pushes model and related files to the Hugging Face Hub ([hf.co](https://hf.co/))

    # Parameters

    repo_name: `str`
        Name of the repository in the Hugging Face Hub.

    serialization_dir : `Union[str, PathLike]`, optional (default = `None`)
        Full path to a directory with the serialized model.

    archive_path : `Union[str, PathLike]`, optional (default = `None`)
        Full path to the zipped model (e.g. model/model.tar.gz). Use `serialization_dir` if possible.

    organization : `Optional[str]`, optional (default = `None`)
        Name of organization to which the model should be uploaded.

    commit_message: `str` (default=`Update repository`)
        Commit message to use for the push.

    local_repo_path : `Union[str, Path]`, optional (default=`hub`)
        Local directory where the repository will be saved.

    use_auth_token (``str`` or ``bool``, `optional`, defaults ``True``):
        huggingface_token can be extract from ``HfApi().login(username, password)`` and is used to authenticate
        against the Hugging Face Hub (useful from Google Colab for instance). It's automatically retrieved
        if you've done `huggingface-cli login` before.
    """

    if serialization_dir is not None:
        working_dir = Path(serialization_dir)
        if archive_path is not None:
            raise ValueError(
                "serialization_dir and archive_path are mutually exclusive, please just use one."
            )
        if not working_dir.exists() or not working_dir.is_dir():
            raise ValueError(
                f"Can't find path: {serialization_dir}, please point"
                "to a directory with the serialized model.")
    elif archive_path is not None:
        working_dir = Path(archive_path)
        if (not working_dir.exists() or not zipfile.is_zipfile(working_dir)
                and not tarfile.is_tarfile(working_dir)):
            raise ValueError(
                f"Can't find path: {archive_path}, please point to a .tar.gz archive"
                "or to a directory with the serialized model.")
        else:
            logging.info(
                "Using the archive_path is discouraged. Using the serialization_dir"
                "will also upload metrics and TensorBoard traces to the Hugging Face Hub."
            )
    else:
        raise ValueError(
            "please specify either serialization_dir or archive_path")

    info_msg = f"Preparing repository '{use_auth_token}'"
    if isinstance(use_auth_token, str):
        huggingface_token = use_auth_token
    elif use_auth_token:
        huggingface_token = HfFolder.get_token()

    # Create the repo (or clone its content if it's nonempty)
    api = HfApi()
    repo_url = api.create_repo(
        name=repo_name,
        token=huggingface_token,
        organization=organization,
        private=False,
        exist_ok=True,
    )

    repo_local_path = Path(local_repo_path) / repo_name
    repo = Repository(repo_local_path,
                      clone_from=repo_url,
                      use_auth_token=use_auth_token)
    repo.git_pull(rebase=True)

    # Model file should be tracked with Git LFS
    repo.lfs_track(["*.th"])
    info_msg = f"Preparing repository '{repo_name}'"
    if organization is not None:
        info_msg += f" ({organization})"
    logging.info(info_msg)

    # Extract information from either serializable directory or a
    # .tar.gz file
    if serialization_dir is not None:
        for filename in working_dir.iterdir():
            _copy_allowed_file(Path(filename), repo_local_path)
    else:
        with tempfile.TemporaryDirectory() as temp_dir:
            extracted_dir = Path(
                cached_path(working_dir, temp_dir, extract_archive=True))
            for filename in extracted_dir.iterdir():
                _copy_allowed_file(Path(filename), repo_local_path)

    _create_model_card(repo_local_path)

    logging.info(f"Pushing repo {repo_name} to the Hugging Face Hub")
    repo.push_to_hub(commit_message=commit_message)

    logging.info(f"View your model in {repo_url}")
    return repo_url
예제 #4
0
파일: runner.py 프로젝트: kaen2891/s3prl
    def push_to_huggingface_hub(self):
        """Creates a downstream repository on the Hub and pushes training artifacts to it."""
        if self.args.hf_hub_org.lower() != "none":
            organization = self.args.hf_hub_org
        else:
            organization = os.environ.get("HF_USERNAME")
        huggingface_token = HfFolder.get_token()
        print(f"[Runner] - Organisation to push fine-tuned model to: {organization}")
        
        # Extract upstream repository metadata
        if self.args.hub == "huggingface":
            model_info = HfApi().model_info(self.args.upstream, token=huggingface_token)
            downstream_model_id = model_info.sha
            # Exclude "/" characters from downstream repo ID
            upstream_model_id = model_info.modelId.replace("/", "__")
        else:
            upstream_model_id = self.args.upstream.replace("/", "__")
            downstream_model_id = str(uuid.uuid4())[:8]
        repo_name = f"{upstream_model_id}__{downstream_model_id}"
        # Create downstream repo on the Hub
        repo_url = HfApi().create_repo(
            token=huggingface_token,
            name=repo_name,
            organization=organization,
            exist_ok=True,
            private=False,
        )
        print(f"[Runner] - Created Hub repo: {repo_url}")

        # Download repo
        HF_HUB_DIR = "hf_hub"
        REPO_ROOT_DIR = os.path.join(self.args.expdir, HF_HUB_DIR, repo_name)
        REPO_TASK_DIR = os.path.join(REPO_ROOT_DIR, self.args.downstream, self.args.expname)
        print(f"[Runner] - Cloning Hub repo to {REPO_ROOT_DIR}")
        model_repo = Repository(
            local_dir=REPO_ROOT_DIR, clone_from=repo_url, use_auth_token=huggingface_token
        )
        # Pull latest changes if they exist
        model_repo.git_pull()

        # Copy checkpoints, tensorboard logs, and args / configs
        # Note that this copies all files from the experiment directory,
        # including those from multiple runs
        shutil.copytree(self.args.expdir, REPO_TASK_DIR, dirs_exist_ok=True, ignore=shutil.ignore_patterns(HF_HUB_DIR))

        # By default we use model.ckpt in the PreTrainedModel interface, so
        # rename the best checkpoint to match this convention
        checkpoints = list(Path(REPO_TASK_DIR).glob("*best*.ckpt"))
        if len(checkpoints) == 0:
            print("[Runner] - Did not find a best checkpoint! Using the final checkpoint instead ...")
            CKPT_PATH = (
                os.path.join(REPO_TASK_DIR, f"states-{self.config['runner']['total_steps']}.ckpt")
                )
        elif len(checkpoints) > 1:
            print(f"[Runner] - More than one best checkpoint found! Using {checkpoints[0]} as default ...")
            CKPT_PATH = checkpoints[0]
        else:
            print(f"[Runner] - Found best checkpoint {checkpoints[0]}!")
            CKPT_PATH = checkpoints[0]
        shutil.move(CKPT_PATH, os.path.join(REPO_TASK_DIR, "model.ckpt"))
        model_repo.lfs_track("*.ckpt")

        # Write model card
        self._create_model_card(REPO_ROOT_DIR)

        # Push everything to the Hub
        print("[Runner] - Pushing model files to the Hub ...")
        model_repo.push_to_hub()
        print("[Runner] - Training run complete!")