def runing(config, budget): os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.reset_default_graph() network = config["network"] print("sid {sid}, network: {network}".format(sid=sid, network=network)) # hyperparameters learning_rate = config["lr"] batch_size = 256 n_training_epochs = int(budget) # load data mnist = input_data.read_data_sets('data/mnist', one_hot=True) # Input (X) and Target (Y) placeholders, they will be fed with a batch of # input and target values respectively, from the training and test sets X = qfns.input_placeholder() Y = qfns.target_placeholder() # Create the tensorflow computational graph for our model if network == "onelayer": w, b, logits_op, preds_op, xentropy_op, loss_op = qfns.onelayer(X, Y) # [variable_summaries(v, name) for (v, name) in zip((w, b), ("w", "b"))] # tf.summary.histogram('pre_activations', logits_op) elif network == "twolayers": w1, b1, w2, b2, logits_op, preds_op, xentropy_op, loss_op = \ qfns.twolayer(X, Y, hiddensize=30, outputsize=10) # [variable_summaries(v, name) for (v, name) in # zip((w1, b1, w2, b2), ("w1", "b1", "w2", "b2"))] # tf.summary.histogram('pre_activations', logits_op) elif network == "conv": # standard conv layers conv1out, conv2out, w, b, logits_op, preds_op, xentropy_op, loss_op = \ qfns.convnet(tf.reshape(X, [-1, 28, 28, 1]), Y, convlayer_sizes=[10, 10], filter_shape=[3, 3], outputsize=10, padding="same") # [variable_summaries(v, name) for (v, name) in ((w, "w"), (b, "b"))] # tf.summary.histogram('pre_activations', logits_op) else: raise ValueError("Incorrect network string in line 7") # The training op performs a step of stochastic gradient descent on a minibatch optimizer = tf.train.AdamOptimizer # ADAM - widely used optimiser (ref: http://arxiv.org/abs/1412.6980) train_op = optimizer(learning_rate).minimize(loss_op) # Prediction and accuracy ops accuracy_op = get_accuracy_op(preds_op, Y) # TensorBoard for visualisation # Merge all the summaries and write them out to /tmp/mnist_logs (by default) summaries_op = tf.summary.merge_all() # Separate accuracy summary so we can use train and test sets accuracy_placeholder = tf.placeholder(shape=[], dtype=tf.float32) # accuracy_summary_op = tf.summary.scalar("accuracy", accuracy_placeholder) # When run, the init_op initialises any TensorFlow variables # hint: weights and biases in our case init_op = tf.global_variables_initializer() # Get started with tf.Session() as sess: sess.run(init_op) # Initialise TensorBoard Summary writers # dtstr = "{:%b_%d_%H-%M-%S}".format(datetime.now()) # train_writer = tf.summary.FileWriter('./summaries/' + dtstr + '/train', sess.graph) # test_writer = tf.summary.FileWriter('./summaries/' + dtstr + '/test') # Train print('Starting Training...') train_accuracy, test_accuracy = train(sess, mnist, n_training_epochs, batch_size, X, Y, train_op, loss_op, accuracy_op, accuracy_placeholder) print('Training Complete\n') print( "train_accuracy: {train_accuracy}, test_accuracy: {test_accuracy}". format(**locals())) with open("results.csv", "a") as f: f.write("{0},{1},{2},{3}\n".format(sid, network, train_accuracy, train_accuracy)) return train_accuracy, test_accuracy
# hyperparameters learning_rate = 0.001 batch_size = 128 n_training_epochs = 20 # load data mnist = input_data.read_data_sets('data/mnist', one_hot=True) # Input (X) and Target (Y) placeholders, they will be fed with a batch of # input and target values resepectively, from the training and test sets X = qfns.input_placeholder() Y = qfns.target_placeholder() # Create the tensorflow computational graph for our model if network == "onelayer": w, b, logits_op, preds_op, xentropy_op, loss_op = qfns.onelayer(X, Y) [variable_summaries(v, name) for (v, name) in zip((w, b), ("w", "b"))] tf.summary.histogram('pre_activations', logits_op) elif network == "twolayer": w1, b1, w2, b2, logits_op, preds_op, xentropy_op, loss_op = \ qfns.twolayer(X, Y) [ variable_summaries(v, name) for (v, name) in zip((w1, b1, w2, b2), ("w1", "b1", "w2", "b2")) ] tf.summary.histogram('pre_activations', logits_op) elif network == "conv": # standard conv layers conv1out, conv2out, w, b, logits_op, preds_op, xentropy_op, loss_op = \ qfns.convnet(tf.reshape(X, [-1, 28, 28, 1]), Y) [variable_summaries(v, name) for (v, name) in ((w, "w"), (b, "b"))]
# hyperparameters learning_rate = 0.001 batch_size = 128 n_training_epochs = 20 # load data mnist = input_data.read_data_sets('data/mnist', one_hot=True) # Input (X) and Target (Y) placeholders, they will be fed with a batch of # input and target values resepectively, from the training and test sets X = qfns.input_placeholder() Y = qfns.target_placeholder() # Create the tensorflow computational graph for our model if network == "onelayer": w, b, logits_op, preds_op, xentropy_op, loss_op = qfns.onelayer(X, Y) [variable_summaries(v, name) for (v, name) in zip((w, b), ("w", "b"))] tf.summary.histogram('pre_activations', logits_op) elif network == "twolayer": w1, b1, w2, b2, logits_op, preds_op, xentropy_op, loss_op = \ qfns.twolayer(X, Y) [variable_summaries(v, name) for (v, name) in zip((w1, b1, w2, b2), ("w1", "b1", "w2", "b2"))] tf.summary.histogram('pre_activations', logits_op) elif network == "conv": # standard conv layers conv1out, conv2out, w, b, logits_op, preds_op, xentropy_op, loss_op = \ qfns.convnet(tf.reshape(X, [-1, 28, 28, 1]), Y) [variable_summaries(v, name) for (v, name) in ((w,"w"), (b,"b"))] tf.summary.histogram('pre_activations', logits_op) #elif network == "rollyourown":