def test_hybrid(self): import dimod import hybrid bqm = dimod.BinaryQuadraticModel({}, {'ab': 1, 'bc': -1, 'ca': 1}, 0, dimod.SPIN) workflow = hybrid.Loop(hybrid.Race( hybrid.InterruptableTabuSampler(), hybrid.EnergyImpactDecomposer(size=2) | hybrid.SimulatedAnnealingSubproblemSampler() | hybrid.SplatComposer() ) | hybrid.ArgMin(), convergence=3) result = workflow.run(hybrid.State.from_problem(bqm)).result() self.assertEqual(result.samples.first.energy, -3.0)
import dimod import hybrid # load a problem problem = sys.argv[1] with open(problem) as fp: bqm = dimod.BinaryQuadraticModel.from_coo(fp) # construct a workflow that races Simulated Annealing against SA/Tabu on a subproblem iteration = hybrid.Race( hybrid.SimulatedAnnealingProblemSampler(), hybrid.EnergyImpactDecomposer(size=50) | hybrid.RacingBranches( hybrid.SimulatedAnnealingSubproblemSampler(num_sweeps=1000), hybrid.TabuSubproblemSampler(tenure=20, timeout=10)) | hybrid.ArgMin('subsamples.first.energy') | hybrid.SplatComposer() ) | hybrid.ArgMin('samples.first.energy') main = hybrid.Loop(iteration, max_iter=10, convergence=3) # run the workflow init_state = hybrid.State.from_sample(hybrid.utils.min_sample(bqm), bqm) solution = main.run(init_state).result() # show results print(""" Solution: energy={s.samples.first.energy}