#iterate over each cell type, and create populationulation object for i, y in enumerate(params.y): #create population: pop = Population( #parent class cellParams = params.yCellParams[y], rand_rot_axis = params.rand_rot_axis[y], simulationParams = params.simulationParams, populationParams = params.populationParams[y], y = y, layerBoundaries = params.layerBoundaries, electrodeParams = params.electrodeParams, savelist = params.savelist, savefolder = params.savefolder, calculateCSD = params.calculateCSD, dt_output = params.dt_output, POPULATIONSEED = SIMULATIONSEED + i, #daughter class kwargs X = params.X, networkSim = networkSim, k_yXL = params.k_yXL[y], synParams = params.synParams[y], synDelayLoc = params.synDelayLoc[y], synDelayScale = params.synDelayScale[y], J_yX = params.J_yX[y], tau_yX = params.tau_yX[y], recordSingleContribFrac = params.recordSingleContribFrac, ) #run population simulation and collect the data pop.run() pop.collect_data()
if properrun: #iterate over each cell type, and create populationulation object for i, Y in enumerate(PS.X): #create population: pop = Population( cellParams = PS.cellParams[Y], rand_rot_axis = PS.rand_rot_axis[Y], simulationParams = PS.simulationParams, populationParams = PS.populationParams[Y], y = Y, layerBoundaries = PS.layerBoundaries, electrodeParams = PS.electrodeParams, savelist = PS.savelist, savefolder = PS.savefolder, calculateCSD = PS.calculateCSD, dt_output = PS.dt_output, POPULATIONSEED = SIMULATIONSEED + i, X = PS.X, networkSim = networkSim, k_yXL = PS.k_yXL[Y], synParams = PS.synParams[Y], synDelayLoc = PS.synDelayLoc[Y], synDelayScale = PS.synDelayScale[Y], J_yX = PS.J_yX[Y], tau_yX = PS.tau_yX[Y], ) #run population simulation and collect the data pop.run() pop.collect_data()
#iterate over each cell type, and create populationulation object for i, Y in enumerate(PSET['X']): #create population: pop = Population( cellParams = PSET['cellParams'][Y], rand_rot_axis = PSET['rand_rot_axis'][Y], simulationParams = PSET['simulationParams'], populationParams = PSET['populationParams'][Y], y = Y, layerBoundaries = PSET['layerBoundaries'], electrodeParams = PSET['electrodeParams'], savelist = PSET['savelist'], savefolder = output_path, calculateCSD = PSET['calculateCSD'], dt_output = PSET['dt_output'], POPULATIONSEED = SIMULATIONSEED + i, X = PSET['X'], networkSim = networkSim, k_yXL = PSET['k_yXL'][Y], synParams = PSET['synParams'][Y], synDelayLoc = PSET['synDelayLoc'][Y], synDelayScale = PSET['synDelayScale'][Y], J_yX = PSET['J_yX'][Y], tau_yX = PSET['tau_yX'][Y], ) #run population simulation and collect the data pop.run() pop.collect_data()
def __init__( self, topology_connections={ 'EX': { 'edge_wrap': True, 'extent': [4000., 4000.], 'allow_autapses': True, 'kernel': { 'exponential': { 'a': 1., 'c': 0.0, 'tau': 300. } }, 'mask': { 'circular': { 'radius': 2000. } }, 'delays': { 'linear': { 'c': 1., 'a': 2. } }, }, 'IN': { 'edge_wrap': True, 'extent': [4000., 4000.], 'allow_autapses': True, 'kernel': { 'exponential': { 'a': 1., 'c': 0.0, 'tau': 300. } }, 'mask': { 'circular': { 'radius': 2000. } }, 'delays': { 'linear': { 'c': 1., 'a': 2. } }, }, }, **kwargs): ''' Initialization of class TopoPopulation, for dealing with networks created using the NEST topology library (distance dependent connectivity). Inherited of class hybridLFPy.Population Arguments --------- topology_connections : dict nested dictionary with topology-connection parameters for each presynaptic population Returns ------- object : populations.TopoPopulation population object with connections, delays, positions, simulation methods See also -------- hybridLFPy.Population ''' #set networkSim attribute so that monkey-patched methods can work self.networkSim = kwargs['networkSim'] self.topology_connections = topology_connections #initialize parent class Population.__init__(self, **kwargs)