def test_agg_with_reset(): 'test the aggregation of states with a reset' # m1 dynamics: x' == 1, y' == 0, x0: [-3, -2], y0: [0, 1], step: 1.0 # m1 invariant: x + y <= 0 # m1 -> m2 guard: x + y >= 0 and y <= 0.5, reset = [[0, -1, 0], [1, 0, 0]] (x' = -y, y' = x, remove a) # m2 dynamics: x' == 0, y' == 0 # time bound: 4 # expected result: last state is line (not box!) from (0, 0) to (-0.5, -0.5) ha = HybridAutomaton() # mode one: x' = 1, y' = 0, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 0], [0, 0, 0]]) # mode two: x' = 0, y' = 1 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0], [0, 0]]) # invariant: x + y <= 0 m1.set_invariant([[1, 1, 0]], [0]) # guard: x + y == 0 & y <= 0.5 trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard([[-1, -1, 0], [1, 1, 0], [0, 1, 0]], [0, 0, 0.5]) #trans1.set_reset(np.identity(3)[:2]) trans1.set_reset(np.array([[0, -1, 0], [1, 0, 0]], dtype=float)) # initial set has x0 = [-3, -2], y = [0, 1], a = 1 init_lpi = lputil.from_box([(-3, -2), (0, 1), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 4.0) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.plot_mode = PlotSettings.PLOT_NONE # use agg_box settings.aggstrat.agg_type = Aggregated.AGG_BOX core = Core(ha, settings) result = core.run(init_list) lpi = result.last_cur_state.lpi # 2 basis matrix rows, 4 init constraints rows, 6 rows from guard conditions (2 from each) assert lpi.get_num_rows() == 2 + 4 + 6 verts = result.last_cur_state.verts(core.plotman) assert len(verts) == 3 assert np.allclose(verts[0], verts[-1]) assert pair_almost_in((0, 0), verts) assert pair_almost_in((-0.5, -0.5), verts)
def run_hylaa(): 'runs hylaa, returning a HylaaResult object' ha = define_ha() init = define_init_states(ha) settings = define_settings() core = Core(ha, settings) result = core.run(init) #core.aggdag.show() return result
def test_init_unsat(): 'initial region unsat with multiple invariant conditions' ha = HybridAutomaton() mode = ha.new_mode('A') mode.set_dynamics(np.identity(2)) mode.set_invariant([[1, 0], [1, 0]], [2, 3]) # x <= 2 and x <= 3 # initial set lpi1 = lputil.from_box([(10, 11), (0, 1)], mode) lpi2 = lputil.from_box([(0, 1), (0, 1)], mode) init_list = [StateSet(lpi1, mode), StateSet(lpi2, mode)] # settings settings = HylaaSettings(1, 5) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.run(init_list) # expect no exception during running
def test_multiple_init_states(): 'test with multiple initial states in the same mode (should NOT do aggregation)' ha = HybridAutomaton() # with time and affine variable mode = ha.new_mode('mode') mode.set_dynamics([[0, 0], [0, 0]]) # initial set init_lpi = lputil.from_box([(-5, -4), (0, 1)], mode) init_lpi2 = lputil.from_box([(-5, -5), (2, 3)], mode) init_list = [StateSet(init_lpi, mode), StateSet(init_lpi2, mode)] # settings settings = HylaaSettings(math.pi/4, math.pi) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) core.run(init_list)
def test_stateset_bad_init(): 'test constructing a stateset with a basis matrix that is not the identity (should raise error)' # this is from an issue reported by Mojtaba Zarei ha = HybridAutomaton() mode = ha.new_mode('mode') mode.set_dynamics([[0, 1], [-1, 0]]) # initial set init_lpi = lputil.from_box([(-5, -5), (0, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, math.pi) settings.stdout = HylaaSettings.STDOUT_NONE settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) result = core.run(init_list) # use last result stateset = result.last_cur_state mode = stateset.mode lpi = stateset.lpi try: init_states = [StateSet(lpi, mode)] settings = HylaaSettings(0.1, 0.1) core = Core(ha, settings) result = core.run(init_states) assert False, "assertion should be raised if init basis matrix is not identity" except RuntimeError: pass
def test_ha(): 'test for the harmonic oscillator example with line initial set (from ARCH 2018 paper)' ha = HybridAutomaton() # with time and affine variable mode = ha.new_mode('mode') mode.set_dynamics([[0, 1, 0, 0], [-1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0]]) error = ha.new_mode('error') trans1 = ha.new_transition(mode, error) trans1.set_guard([[1., 0, 0, 0], [-1., 0, 0, 0]], [4.0, -4.0]) # initial set init_lpi = lputil.from_box([(-5, -5), (0, 1), (0, 0), (1, 1)], mode) init_list = [StateSet(init_lpi, mode)] # settings settings = HylaaSettings(math.pi/4, 2*math.pi) settings.stdout = HylaaSettings.STDOUT_VERBOSE settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE core = Core(ha, settings) result = core.run(init_list) assert result.has_concrete_error ce = result.counterexample[0] # [-5.0, 0.6568542494923828, 0.0, 1.0] -> [4.0, 3.0710678118654737, 2.356194490192345, 1.0] assert ce.mode == mode assert np.allclose(ce.start, np.array([-5, 0.65685, 0, 1], dtype=float)) assert np.allclose(ce.end, np.array([4, 3.07106, 2.35619, 1], dtype=float)) # check the reachable state (should always have x <= 3.5) obj_list = result.plot_data.mode_to_obj_list[0][mode.name] for obj in obj_list: verts = obj[0] for vert in verts: x, _ = vert assert x <= 4.9
def run_hylaa(self, predictions): self.ha = None self.predictions = None self.modeList = [] self.initialState = None self.ha = HybridAutomaton() self.predictions = predictions self.graphPredictions() self.make_automaton() initialBox = self.make_init(self.predictions[0][0]) core = Core(self.ha, self.settings) result = core.run(initialBox) reachsets = [ result.plot_data.get_verts_list(mode)[0] for mode in self.modeList ] return reachsets
def test_plain(): 'test plain aggregation of states across discrete transitions' # m1 dynamics: x' == 1, y' == 0, x0, y0: [0, 1], step: 1.0 # m1 invariant: x <= 3 # m1 -> m2 guard: True # m2 dynamics: x' == 0, y' == 1 # time bound: 4 # excepted final states to be: x: [0, 4], y: [4,5] # x is [1, 4] because no transitions are allowed at step 0 (simulation-equiv semantics) and a transition is # allowed one step after the invariant becomes false # y is [4,5] because after aggregation, the time elapsed for the aggregated set will be 0.0, the minimum ha = HybridAutomaton() # mode one: x' = 1, y' = 0, a' = 0 m1 = ha.new_mode('m1') m1.set_dynamics([[0, 0, 1], [0, 0, 0], [0, 0, 0]]) # mode two: x' = 0, y' = 1, a' = 0 m2 = ha.new_mode('m2') m2.set_dynamics([[0, 0, 0], [0, 0, 1], [0, 0, 0]]) # invariant: x <= 3.0 m1.set_invariant([[1, 0, 0]], [3.0]) # guard: True trans1 = ha.new_transition(m1, m2, 'trans1') trans1.set_guard(csr_matrix((0, 0)), []) # initial set has x0 = [0, 1], t = [0, 1], a = 1 init_lpi = lputil.from_box([(0, 1), (0, 1), (1, 1)], m1) init_list = [StateSet(init_lpi, m1)] # settings, step size = 1.0 settings = HylaaSettings(1.0, 4.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.plot_mode = PlotSettings.PLOT_NONE settings.plot.store_plot_result = True core = Core(ha, settings) result = core.run(init_list) # check history state = result.last_cur_state assert state.mode == m2 assert len(state.aggdag_op_list) > 1 op0 = state.aggdag_op_list[0] op1 = state.aggdag_op_list[1] assert isinstance(op0, OpTransition) assert len(core.aggdag.roots) == 1 assert op0.child_node.stateset.mode is m2 assert op0.transition == trans1 assert op0.parent_node == core.aggdag.roots[0] assert isinstance(op0.poststate, StateSet) assert op0.step == 1 assert isinstance(op0.child_node, AggDagNode) assert op0.child_node == op1.child_node assert op0.child_node not in core.aggdag.roots assert len(op0.parent_node.stateset.aggdag_op_list) == 1 assert op0.parent_node.stateset.aggdag_op_list[0] is None # check polygons in m2 polys2 = [obj[0] for obj in result.plot_data.mode_to_obj_list[0]['m2']] assert 4 <= len(polys2) <= 5 assert_verts_is_box(polys2[0], [[1, 4], [0, 1]]) assert_verts_is_box(polys2[1], [[1, 4], [1, 2]]) assert_verts_is_box(polys2[2], [[1, 4], [2, 3]]) assert_verts_is_box(polys2[3], [[1, 4], [3, 4]])
def test_tt_09(): 'test time-triggered transition at 0.9 bug' # this test is from an issue reported by Mojtaba Zarei tt_time = 0.9 ha = HybridAutomaton() # the test seems to be sensitive to the a_matrix... my guess is the LP is barely feasible at the tt_time a_matrix = np.array( [[6.037291088, -4.007840286, 2.870370645, 43.12729646, 10.06751155, 23.26084098, -0.001965587832, 0, 0], [3.896645707, -0.03417905392, -9.564966476, 15.25894014, -21.57196438, 16.60548055, 0.03473846441, 0, 0], [22.72995871, 14.12055097, -0.9315267908, 136.9851951, -71.66383111, 109.7143863, 0.1169799769, 0, 0], [-38.16694597, 3.349061908, -9.10171149, -185.1866526, 9.210877185, -165.8086527, -0.06858712649, 0, 0], [46.78596597, 27.7996521, 17.18120319, 285.4632424, -135.289626, 235.9427441, 0.228154713, 0, 0], [-8.31135303, 3.243945466, -4.523811735, -39.26067436, -9.385678542, -36.63193931, -0.0008874747046, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=float) mode1 = ha.new_mode('mode') mode1.set_dynamics(a_matrix) # time-triggered invariant: t <= tt_time mat = np.array([[0, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=float) rhs = [tt_time] mode1.set_invariant(mat, rhs) mode2 = ha.new_mode('mode2') mode2.set_dynamics(a_matrix) # transition, guard: x >= -2 & y > 4 & t >= tt_time # transition, guard: t >= 0.9 mat = np.array([[0, 0, 0, 0, 0, 0, 0, -1, 0]], dtype=float) rhs = [-tt_time] t = ha.new_transition(mode1, mode2) t.set_guard(mat, rhs) # initial set init_box = np.array([[-0.1584, -0.1000], [-0.0124, 0.0698], [-0.3128, 0.0434], [-0.0208, 0.0998], [-0.4895, 0.1964], [-0.0027, 0.0262], [42.40, 42.5], [0, 0], # t(0) = 0 [1, 1]]) # affine(0) = 1 init_lpi = lputil.from_box(init_box, mode1) init_list = [StateSet(init_lpi, mode1)] # settings settings = HylaaSettings(0.05, 1.0) settings.stdout = HylaaSettings.STDOUT_DEBUG settings.plot.store_plot_result = True settings.plot.plot_mode = PlotSettings.PLOT_NONE #INTERACTIVE #settings.plot.xdim_dir = 7 #None #settings.plot.ydim_dir = 0 core = Core(ha, settings) result = core.run(init_list) mode2_list = result.plot_data.mode_to_obj_list[0]['mode2'] assert len(mode2_list) == 3, f"mode2_list len was {len(mode2_list)}, expected 3 (0.9, 0.95, 1.0)"
def test_tt_split(): 'tests time-triggered dynamics where the state is split (based on state) after some amount of time elapses' ha = HybridAutomaton() # dynamics variable order: [x0, x1, x2, x3, u, t, affine] pole = ha.new_mode('pole') a_matrix = [ \ [0, 1, 0, 0, 0, 0, 0], \ [0, 0, 0.7164, 0, 0.9755, 0, 0], \ [0, 0, 0, 1, 0, 0, 0], \ [0, 0, 0.76, 0, 0.46, 0, 0], \ [0, 0, 0, 0, 0, 0, 0], \ [0, 0, 0, 0, 0, 0, 1], \ [0, 0, 0, 0, 0, 0, 0], \ ] pole.set_dynamics(a_matrix) # 0.0 <= t & t <= 0.1 pole.set_invariant([[0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 1, 0], ], [0, 0.1, ]) trans = ha.new_transition(pole, pole, 'b2') # x3 <= 1.0229164510965 & x2 <= 2.0244571492076 & x3 > -10.0172335505486 & x2 <= 1.0329331979156 & t >= 0.1 trans.set_guard([[0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [-0, -0, -0, -1, -0, -0, -0], [0, 0, 1, 0, 0, 0, 0], [-0, -0, -0, -0, -0, -1, -0], ], [1.0229164510965, 2.0244571492076, 10.0172335505486, 1.0329331979156, -0.1, ]) # Reset: # t := 0.0 # u := 0.2 reset_mat = [ \ [1, 0, 0, 0, 0, 0, 0, ], \ [0, 1, 0, 0, 0, 0, 0, ], \ [0, 0, 1, 0, 0, 0, 0, ], \ [0, 0, 0, 1, 0, 0, 0, ], \ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], \ [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ], \ [0, 0, 0, 0, 0, 0, 1, ], \ ] reset_minkowski = [ \ [0, ], \ [0, ], \ [0, ], \ [0, ], \ [1, ], \ [0, ], \ [0, ], \ ] minkowski_constraints = [ \ [1, ], \ [-1, ], \ ] minkowski_rhs = [0.2, -0.2] trans.set_reset(reset_mat, reset_minkowski, minkowski_constraints, minkowski_rhs) # manually run ha.detect_tt_transitions() and check the result def print_none(str): 'suppress printing' pass settings = HylaaSettings(0.05, 0.15) settings.plot.plot_mode = PlotSettings.PLOT_IMAGE settings.plot.xdim_dir = 0 settings.plot.ydim_dir = 3 settings.stdout = HylaaSettings.STDOUT_DEBUG init_list = [] mode = ha.modes['pole'] mat = [[1, 0, 0, 0, 0, 0, 0], \ [-1, -0, -0, -0, -0, -0, -0], \ [0, 1, 0, 0, 0, 0, 0], \ [-0, -1, -0, -0, -0, -0, -0], \ [0, 0, 1, 0, 0, 0, 0], \ [-0, -0, -1, -0, -0, -0, -0], \ [0, 0, 0, -1, 0, 0, 0], \ [0, 0, 0, 1, 0, 0, 0], \ [0, 0, 0, 0, 1, 0, 0], \ [-0, -0, -0, -0, -1, -0, -0], \ [0, 0, 0, 0, 0, 1, 0], \ [-0, -0, -0, -0, -0, -1, -0], \ [0, 0, 0, 0, 0, 0, 1], \ [-0, -0, -0, -0, -0, -0, -1], ] rhs = [0, -0, 0, -0, 0, -0, 1.3, -1.3, 0, -0, 0, -0, 1, -1, ] init_list.append(StateSet(lputil.from_constraints(mat, rhs, mode), mode)) core = Core(ha, settings) result = core.run(init_list) # expect no exception during running assert result.last_cur_state.cur_steps_since_start[0] == 3 assert result.last_cur_state.cur_steps_since_start[1] == 3