예제 #1
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            rs = npr.RandomState(
                npr.RandomState(global_seed + i_hyper).randint(1000))
            seed = i_hyper * 10**6 + i_iter  # Deterministic seed needed for backwards pass.
            idxs = rs.randint(N_train, size=batch_size)
            return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs],
                            L2_vect)

        learning_curve_dict = defaultdict(list)

        def callback(x, v, g, i_iter):
            if i_iter % N_batches == 0:
                learning_curve_dict['learning_curve'].append(
                    loss_fun(x, **train_data))
                learning_curve_dict['grad_norm'].append(np.linalg.norm(g))
                learning_curve_dict['weight_norm'].append(np.linalg.norm(x))
                learning_curve_dict['velocity_norm'].append(np.linalg.norm(v))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(fixed_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(global_seed + i_hyper).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg),
                     callback)
        #callback(W_opt, N_iters)
        return W_opt, learning_curve_dict
예제 #2
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            rs = RandomState((seed, i_hyper, i_iter))  # Deterministic seed needed for backwards pass.
            idxs = rs.randint(N_train, size=batch_size)
            return loss_fun(w, train_data["X"][idxs], train_data["T"][idxs], L2_vect)

        learning_curve_dict = defaultdict(list)

        def callback(x, v, g, i_iter):
            if i_iter % thin == 0:
                learning_curve_dict["learning_curve"].append(loss_fun(x, **train_data))
                learning_curve_dict["grad_norm"].append(np.linalg.norm(g))
                learning_curve_dict["weight_norm"].append(np.linalg.norm(x))
                learning_curve_dict["velocity_norm"].append(np.linalg.norm(v))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        rs = RandomState((seed, i_hyper))
        W0 = fill_parser(parser, np.exp(cur_hyperparams["log_param_scale"]))
        W0 *= rs.randn(W0.size)
        alphas = np.exp(cur_hyperparams["log_alphas"])
        betas = logit(cur_hyperparams["invlogit_betas"])
        L2_reg = fill_parser(parser, np.exp(fixed_hyperparams["log_L2_reg"]))
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        # callback(W_opt, N_iters)
        return W_opt, learning_curve_dict
예제 #3
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            rs = npr.RandomState(
                npr.RandomState(global_seed + i_hyper).randint(1000))
            seed = i_hyper * 10**6 + i_iter  # Deterministic seed needed for backwards pass.
            idxs = rs.randint(N_train, size=batch_size)
            return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs],
                            L2_vect)

        learning_curve = []

        def callback(x, i_iter):
            if i_iter % N_batches == 0:
                learning_curve.append(loss_fun(x, **train_data))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(global_seed + i_hyper).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        V0 = np.zeros(W0.size)
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg),
                     callback)
        return W_opt, learning_curve
예제 #4
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        learning_curve = []
        def callback(x, i_iter):
            learning_curve.append(loss_fun(x))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(hash(i_hyper)).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas  = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        W_opt = sgd4(grad(loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        callback(W_opt, N_iters)
        return W_opt, learning_curve
예제 #5
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        learning_curve = []
        def callback(x, i_iter):
            learning_curve.append(loss_fun(x))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(hash(i_hyper)).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas  = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        W_opt = sgd4(grad(loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        callback(W_opt, N_iters)
        return W_opt, learning_curve
예제 #6
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            seed = i_hyper * 10**6 + i_iter
            idxs = npr.RandomState(seed).randint(N_train, size=batch_size)
            return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)

        learning_curve = []
        def callback(x, v, g, i_iter):
            if i_iter % N_batches == 0:
                learning_curve.append(loss_fun(x, **train_data))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(i_hyper).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas  = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        V0 = np.zeros(W0.size)
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        return W_opt, learning_curve
예제 #7
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            rs = npr.RandomState(npr.RandomState(global_seed + i_hyper).randint(1000))
            seed = i_hyper * 10**6 + i_iter   # Deterministic seed needed for backwards pass.
            idxs = rs.randint(N_train, size=batch_size)
            return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)

        learning_curve = []
        def callback(x, i_iter):
            if i_iter % N_batches == 0:
                learning_curve.append(loss_fun(x, **train_data))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(cur_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(global_seed + i_hyper).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas  = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        callback(W_opt, N_iters)
        return W_opt, learning_curve
예제 #8
0
    def primal_optimizer(hyperparam_vect, i_hyper):
        def indexed_loss_fun(w, L2_vect, i_iter):
            rs = npr.RandomState(npr.RandomState(global_seed + i_hyper).randint(1000))
            seed = i_hyper * 10**6 + i_iter   # Deterministic seed needed for backwards pass.
            idxs = rs.randint(N_train, size=batch_size)
            return loss_fun(w, train_data['X'][idxs], train_data['T'][idxs], L2_vect)

        learning_curve_dict = defaultdict(list)
        def callback(x, v, g, i_iter):
            if i_iter % thin == 0:
                learning_curve_dict['learning_curve'].append(loss_fun(x, **train_data))
                learning_curve_dict['grad_norm'].append(np.linalg.norm(g))
                learning_curve_dict['weight_norm'].append(np.linalg.norm(x))
                learning_curve_dict['velocity_norm'].append(np.linalg.norm(v))

        cur_hyperparams = hyperparams.new_vect(hyperparam_vect)
        W0 = fill_parser(parser, np.exp(fixed_hyperparams['log_param_scale']))
        W0 *= npr.RandomState(global_seed + i_hyper).randn(W0.size)
        alphas = np.exp(cur_hyperparams['log_alphas'])
        betas  = logit(cur_hyperparams['invlogit_betas'])
        L2_reg = fill_parser(parser, np.exp(cur_hyperparams['log_L2_reg']))
        W_opt = sgd4(grad(indexed_loss_fun), kylist(W0, alphas, betas, L2_reg), callback)
        #callback(W_opt, N_iters)
        return W_opt, learning_curve_dict