class WaterNetworkProtocol: def __init__(self, context, MCsteps=1000, parallel_cores=1): self.context = context self.rh = RhymerHypstar(context) self.rhp = RhymerProcessing(context) self.rhs = RhymerShared(context) def function(self, upwelling_radiance, downwelling_radiance, irradiance, rhof, wavelength): ''' This function implements the measurement function. Each of the arguments can be either a scalar or a vector (1D-array). ''' # default water network processing water_leaving_radiance = [ (upwelling_radiance[w] - (rhof * downwelling_radiance[w])) for w in range(len(downwelling_radiance)) ] reflectance_nosc = [ np.pi * (upwelling_radiance[w] - (rhof * downwelling_radiance[w])) / irradiance[w] for w in range(len(downwelling_radiance)) ] # NIR SIMIL CORRECTION # retrieve variables for NIR SIMIL correction w1 = self.context.get_config_value("similarity_w1") w2 = self.context.get_config_value("similarity_w2") alpha = self.context.get_config_value("similarity_alpha") iref1, wref1 = self.rhs.closest_idx(wavelength, w1) iref2, wref2 = self.rhs.closest_idx(wavelength, w2) ## get pixel index for similarity if alpha is None: ssd = self.rhp.similarity_read() id1, w1 = self.rhs.closest_idx(ssd['wave'], w1 / 1000.) id2, w2 = self.rhs.closest_idx(ssd['wave'], w2 / 1000.) alpha = ssd['ave'][id1] / ssd['ave'][id2] epsilon = (alpha * reflectance_nosc[iref1] - reflectance_nosc[iref2]) / (alpha - 1.0) reflectance = [r - epsilon for r in reflectance_nosc] return water_leaving_radiance, reflectance_nosc, reflectance, epsilon @staticmethod def get_name(): return "WaterNetworkProtocol" def get_argument_names(self): return [ "upwelling_radiance", "downwelling_radiance", "irradiance", "rhof", "wavelength" ]
class RhymerHypstar: def __init__(self, context): self.context = context self.templ = DataTemplates(context=context) self.writer = HypernetsWriter(context) self.avg = Average(context) self.intp = Interpolate(context, MCsteps=1000) self.plot = Plotting(context) self.rhymeranc = RhymerAncillary(context) self.rhymerproc = RhymerProcessing(context) self.rhymershared = RhymerShared(context) def qc_scan(self, dataset, measurandstring, dataset_l1b): ## no inclination ## difference at 550 nm < 25% with neighbours ## ## QV July 2018 ## Last modifications: 2019-07-10 (QV) renamed from PANTR, integrated in rhymer # Modified 10/09/2020 by CG for the PANTHYR verbosity = self.context.get_config_value("verbosity") series_id = np.unique(dataset['series_id']) wave = dataset['wavelength'].values flags = np.zeros(shape=len(dataset['scan'])) id = 0 for s in series_id: scans = dataset['scan'][dataset['series_id'] == s] ## n = len(scans) ## get pixel index for wavelength iref, wref = self.rhymershared.closest_idx( wave, self.context.get_config_value("diff_wave")) cos_sza = [] for i in dataset['solar_zenith_angle'].sel(scan=scans).values: cos_sza.append(math.cos(math.radians(i))) ## go through the current set of scans for i in range(n): ## test inclination ## not done if measurandstring == 'irradiance': data = dataset['irradiance'].sel(scan=scans).T.values ## test variability at 550 nm if i == 0: v = abs(1 - ((data[i][iref] / cos_sza[i]) / (data[i + 1][iref] / cos_sza[i + 1]))) elif i < n - 1: v = max( abs(1 - ((data[i][iref] / cos_sza[i]) / (data[i + 1][iref] / cos_sza[i + 1]))), abs(1 - ((data[i][iref] / cos_sza[i]) / (data[i - 1][iref] / cos_sza[i - 1])))) else: v = abs(1 - ((data[i][iref] / cos_sza[i]) / (data[i - 1][iref] / cos_sza[i - 1]))) else: data = dataset['radiance'].sel(scan=scans).T.values ## test variability at 550 nm if i == 0: v = abs(1 - (data[i][iref] / data[i + 1][iref])) elif i < n - 1: v = max(abs(1 - (data[i][iref] / data[i + 1][iref])), abs(1 - (data[i][iref] / data[i - 1][iref]))) else: v = abs(1 - (data[i][iref] / data[i - 1][iref])) ## continue if value exceeds the cv threshold if v > self.context.get_config_value("diff_threshold"): # get flag value for the temporal variability if measurandstring == 'irradiance': flags[id] = 1 dataset_l1b['quality_flag'][range( len(dataset_l1b['scan']))] = du.set_flag( dataset_l1b["quality_flag"][range( len(dataset_l1b['scan']))], "temp_variability_ed") else: flags[id] = 1 dataset_l1b['quality_flag'][range( len(dataset_l1b['scan']))] = du.set_flag( dataset_l1b["quality_flag"][range( len(dataset_l1b['scan']))], "temp_variability_lu") seq = dataset.attrs["sequence_id"] ts = datetime.utcfromtimestamp( dataset['acquisition_time'][i]) if verbosity > 2: self.context.logger.info( 'Temporal jump: in {}: Aquisition time {}, {}'. format( seq, ts, ', '.join([ '{}:{}'.format(k, dataset[k][scans[i]].values) for k in ['scan', 'quality_flag'] ]))) id += 1 return dataset_l1b, flags def cycleparse(self, rad, irr, dataset_l1b): protocol = self.context.get_config_value( "measurement_function_surface_reflectance") self.context.logger.debug(protocol) nbrlu = self.context.get_config_value("n_upwelling_rad") nbred = self.context.get_config_value("n_upwelling_irr") nbrlsky = self.context.get_config_value("n_downwelling_rad") if protocol != 'WaterNetworkProtocol': # here we should simply provide surface reflectance? # what about a non-standard protocol but that includes the required standard series? self.context.logger.error( 'Unknown measurement protocol: {}'.format(protocol)) else: uprad = [] downrad = [] for i in rad['scan']: scani = rad.sel(scan=i) senz = scani["viewing_zenith_angle"].values if senz < 90: measurement = 'upwelling_radiance' uprad.append(int(i)) if senz >= 90: measurement = 'downwelling_radiance' downrad.append(int(i)) if measurement is None: continue lu = rad.sel(scan=uprad) lsky = rad.sel(scan=downrad) for i in lu['scan']: scani = lu.sel(scan=i) sena = scani["viewing_azimuth_angle"].values senz = scani["viewing_zenith_angle"].values self.context.logger.debug(scani['acquisition_time'].values) ts = datetime.utcfromtimestamp( int(scani['acquisition_time'].values)) # not fromtimestamp? if (senz != 'NULL') & (sena != 'NULL'): senz = float(senz) sena = abs(float(sena)) else: dataset_l1b['quality_flag'] = du.set_flag( dataset_l1b.sel(scan=i)['quality_flag'], "angles_missing") self.context.logger.info( 'NULL angles: Aquisition time {}, {}'.format( ts, ', '.join([ '{}:{}'.format(k, scani[k].values) for k in ['scan', 'quality_flag'] ]))) continue # check if we have the same azimuth for lu and lsky sena_lu = np.unique(lu["viewing_azimuth_angle"].values) sena_lsky = np.unique(lsky["viewing_azimuth_angle"].values) for i in sena_lu: if i not in sena_lsky: dataset_l1b["quality_flag"][ dataset_l1b["viewing_azimuth_angle"] == i] = du.set_flag( dataset_l1b["quality_flag"][ dataset_l1b["viewing_azimuth_angle"] == i], "lu_eq_missing") if self.context.get_config_value("verbosity") > 2: ts = [ datetime.utcfromtimestamp(x) for x in lu['acquisition_time'][ lu["viewing_azimuth_angle"] == i].values ] self.context.logger.info( 'No azimuthal equivalent downwelling radiance measurement: Aquisition time {}, {}' .format( ts, ', '.join([ '{}:{}'.format( k, lu[k][lu["viewing_azimuth_angle"] == i].values) for k in ['scan', 'quality_flag'] ]))) # check if we have the required fresnel angle for lsky senz_lu = np.unique(lu["viewing_zenith_angle"].values) senz_lsky = 180 - np.unique(lsky["viewing_zenith_angle"].values) for i in senz_lu: if i not in senz_lsky: dataset_l1b["quality_flag"][ dataset_l1b["viewing_azimuth_angle"] == i] = du.set_flag( dataset_l1b["quality_flag"][ dataset_l1b["viewing_azimuth_angle"] == i], "fresnel_angle_missing") ts = [ datetime.utcfromtimestamp(x) for x in lu['acquisition_time'][ lu["viewing_zenith_angle"] == i].values ] self.context.logger.info( 'No downwelling radiance measurement at appropriate fresnel angle: Aquisition time {}, {}' .format( ts, ', '.join([ '{}:{}'.format( k, lu[k][lu["viewing_azimuth_angle"] == i].values) for k in ['scan', 'quality_flag'] ]))) # check if correct number of radiance and irradiance data if lu.scan[lu['quality_flag'] <= 0].count() < nbrlu: for i in range(len(dataset_l1b["scan"])): dataset_l1b["quality_flag"][ dataset_l1b["scan"] == i] = du.set_flag( dataset_l1b["quality_flag"][dataset_l1b["scan"] == i], "min_nbrlu") self.context.logger.info( "No enough upwelling radiance data for sequence {}".format( lu.attrs['sequence_id'])) if lsky.scan[lsky['quality_flag'] <= 1].count() < nbrlsky: for i in range(len(dataset_l1b["scan"])): dataset_l1b["quality_flag"][ dataset_l1b["scan"] == i] = du.set_flag( dataset_l1b["quality_flag"][dataset_l1b["scan"] == i], "min_nbrlsky") self.context.logger.info( "No enough downwelling radiance data for sequence {}". format(lsky.attrs['sequence_id'])) if irr.scan[irr['quality_flag'] <= 1].count() < nbred: for i in range(len(dataset_l1b["scan"])): dataset_l1b["quality_flag"][ dataset_l1b["scan"] == i] = du.set_flag( dataset_l1b["quality_flag"][dataset_l1b["scan"] == i], "min_nbred") self.context.logger.info( "No enough downwelling irradiance data for sequence {}". format(irr.attrs['sequence_id'])) return lu, lsky, irr, dataset_l1b def get_wind(self, l1b): lat = l1b.attrs['site_latitude'] lon = l1b.attrs['site_latitude'] wind = [] for i in range(len(l1b.scan)): wa = self.context.get_config_value("wind_ancillary") if not wa: l1b["quality_flag"][l1b["scan"] == i] = du.set_flag( l1b["quality_flag"][l1b["scan"] == i], "def_wind_flag") self.context.logger.info("Default wind speed {}".format( self.context.get_config_value("wind_default"))) wind.append(self.context.get_config_value("wind_default")) else: isodate = datetime.utcfromtimestamp( l1b['acquisition_time'].values[i]).strftime('%Y-%m-%d') isotime = datetime.utcfromtimestamp( l1b['acquisition_time'].values[i]).strftime('%H:%M:%S') anc_wind = self.rhymeranc.get_wind(isodate, lon, lat, isotime=isotime) if anc_wind is not None: wind.append(anc_wind) l1b['fresnel_wind'].values = wind return l1b def get_fresnelrefl(self, l1b): ## read mobley rho lut fresnel_coeff = np.zeros(len(l1b.scan)) fresnel_vza = np.zeros(len(l1b.scan)) fresnel_raa = np.zeros(len(l1b.scan)) fresnel_sza = np.zeros(len(l1b.scan)) wind = l1b["fresnel_wind"].values for i in range(len(l1b.scan)): fresnel_vza[i] = l1b['viewing_zenith_angle'][i].values fresnel_sza[i] = l1b['solar_zenith_angle'][i].values diffa = l1b['viewing_azimuth_angle'][i].values - l1b[ 'solar_azimuth_angle'][i].values if diffa >= 360: diffa = diffa - 360 elif 0 <= diffa < 360: diffa = diffa else: diffa = diffa + 360 fresnel_raa[i] = abs((diffa - 180)) ## get fresnel reflectance if self.context.get_config_value("fresnel_option") == 'Mobley': if (fresnel_sza[i] is not None) & (fresnel_raa[i] is not None): sza = min(fresnel_sza[i], 79.999) rhof = self.rhymerproc.mobley_lut_interp(sza, fresnel_vza[i], fresnel_raa[i], wind=wind[i]) else: l1b["quality_flag"][l1b["scan"] == i] = du.set_flag( l1b["quality_flag"][l1b["scan"] == i], "fresnel_default") rhof = self.context.get_config_value("rhof_default") if self.context.get_config_value( "fresnel_option") == 'Ruddick2006': rhof = self.context.get_config_value("rhof_default") self.context.logger.info("Apply Ruddick et al., 2006") if wind[i] is not None: rhof = rhof + 0.00039 * wind[i] + 0.000034 * wind[i]**2 fresnel_coeff[i] = rhof l1b["rhof"].values = fresnel_coeff l1b["fresnel_vza"].values = fresnel_vza l1b["fresnel_raa"].values = fresnel_raa l1b["fresnel_sza"].values = fresnel_sza return l1b def qc_similarity(self, L1c): wave = L1c["wavelength"] wr = L1c.attrs["similarity_waveref"] wp = L1c.attrs["similarity_wavethres"] epsilon = L1c["epsilon"] ## get pixel index for wavelength irefr, wrefr = self.rhymershared.closest_idx(wave, wr) failSimil = [] scans = L1c['scan'] for i in range(len(scans)): data = L1c['reflectance_nosc'].sel(scan=i).values if abs(epsilon[i]) > wp * data[irefr]: failSimil.append(1) else: failSimil.append(0) return failSimil def process_l1c_int(self, l1a_rad, l1a_irr): # because we average to Lu scan we propagate values from radiance! dataset_l1b = self.templ.l1c_int_template_from_l1a_dataset_water( l1a_rad) # QUALITY CHECK: TEMPORAL VARIABILITY IN ED AND LSKY -> ASSIGN FLAG dataset_l1b, flags_rad = self.qc_scan(l1a_rad, "radiance", dataset_l1b) dataset_l1b, flags_irr = self.qc_scan(l1a_irr, "irradiance", dataset_l1b) # QUALITY CHECK: MIN NBR OF SCANS -> ASSIGN FLAG # remove temporal variability scans before average l1a_rad = l1a_rad.sel(scan=np.where(np.array(flags_rad) != 1)[0]) l1a_irr = l1a_irr.sel(scan=np.where(np.array(flags_irr) != 1)[0]) # check number of scans per cycle for up, down radiance and irradiance L1a_uprad, L1a_downrad, L1a_irr, dataset_l1b = self.cycleparse( l1a_rad, l1a_irr, dataset_l1b) L1b_downrad = self.avg.average_l1b("radiance", L1a_downrad) L1b_irr = self.avg.average_l1b("irradiance", L1a_irr) # INTERPOLATE Lsky and Ed FOR EACH Lu SCAN! Threshold in time -> ASSIGN FLAG # interpolate_l1b_w calls interpolate_irradiance which includes interpolation of the # irradiance wavelength to the radiance wavelength L1c_int = self.intp.interpolate_l1b_w(dataset_l1b, L1a_uprad, L1b_downrad, L1b_irr) return L1c_int