def dbn_template1(self, dataset_name='skdata.larochelle_etal_2007.Rectangles', sup_min_epochs=300, sup_max_epochs=4000): template = rSON2( 'preprocessing', one_of( rSON2( 'kind', 'raw'), rSON2( 'kind', 'zca', 'energy', uniform(0.5, 1.0))), 'dataset_name', dataset_name, 'sup_max_epochs', sup_max_epochs, 'sup_min_epochs', sup_min_epochs, 'iseed', one_of(5, 6, 7, 8), 'batchsize', one_of(20, 100), 'lr', lognormal(numpy.log(.01), 3), 'lr_anneal_start', geom(100, 10000), 'l2_penalty', one_of(0, lognormal(numpy.log(1.0e-6), 2)), 'next_layer', one_of(None, rSON2( 'n_hid', geom(2**7, 2**12, round=16), 'W_init_dist', one_of('uniform', 'normal'), 'W_init_algo', one_of('old', 'Xavier'), 'W_init_algo_old_multiplier', lognormal(0.0, 1.0), 'cd_epochs', geom(1, 3000), 'cd_batchsize', 100, 'cd_sample_v0s', one_of(False, True), 'cd_lr', lognormal(numpy.log(.01), 2), 'cd_lr_anneal_start', geom(10, 10000), 'next_layer', None))) return template
def __init__(self): hyperopt.bandits.Base.__init__(self, one_of( rSON2( 'kind', 'raw'), rSON2( 'kind', 'negcos', 'amp', uniform(0, 1))))
def dbn_template0(self, dataset_name='skdata.larochelle_etal_2007.Rectangles', sup_min_epochs=300, sup_max_epochs=4000): template = rSON2( 'preprocessing', one_of( rSON2( 'kind', 'raw'), rSON2( 'kind', 'zca', 'energy', uniform(0.5, 1.0))), 'dataset_name', dataset_name, 'sup_max_epochs', sup_max_epochs, 'sup_min_epochs', sup_min_epochs, 'iseed', one_of(5, 6, 7, 8), 'batchsize', one_of(20, 100), 'lr', lognormal(numpy.log(.01), 3), 'lr_anneal_start', geom(100, 10000), 'l2_penalty', one_of(0, lognormal(numpy.log(1.0e-6), 2)), 'next_layer', None) return template