def test_main_worker(trials): options = FakeOptions( max_jobs=1, # XXX: sync this with TempMongo mongo=as_mongo_str('localhost:22334/foodb'), reserve_timeout=1, poll_interval=.5, workdir=None, exp_key='foo') # -- check that it runs # and that the reserve timeout is respected main_worker_helper(options, ())
def test_main_worker(trials): options = FakeOptions( max_jobs=1, # XXX: sync this with TempMongo mongo=as_mongo_str('localhost:22334/foodb'), reserve_timeout=1, poll_interval=.5, workdir=None, exp_key='foo' ) # -- check that it runs # and that the reserve timeout is respected main_worker_helper(options, ())
#'rsenses_imp_loss': "categorical_crossentropy", } if args.action == 'worker': # run distributed worker class Options(object): mongo = args.mongo exp_key = args.exp_key last_job_timeout = None max_consecutive_failures = 2 max_jobs = args.evals #= inf poll_interval = 300 #= 5 min reserve_timeout = 3600 #= 1 hour workdir = None sys.argv[0] = args.worker_helper sys.exit(main_worker_helper(Options(), None)) elif args.action == 'optimizer': # run distributed optimizer trials = MongoTrials(args.mongo, exp_key=args.exp_key) best = fmin(optimize_exec.objective, space, trials=trials, algo=tpe.suggest, max_evals=args.evals) # summary print print "evals: {}".format(args.evals) print "best: {}".format(best) print "space: {}".format(space_eval(space, best)) elif args.action == 'list_best': # list distributed evaluation results best = list_best(args.mongo, exp_key=args.exp_key, space=space)