def test_function_nd(binned, lazy): s = Signal1D(np.empty((250,))) axis = s.axes_manager.signal_axes[0] axis.scale = .2 axis.offset = -15 g1 = Lorentzian(52342, 2, 10) s.data = g1.function(axis.axis) s.metadata.Signal.binned = binned s2 = stack([s] * 2) if lazy: s2 = s2.as_lazy() g2 = Lorentzian() factor = axis.scale if binned else 1 g2.estimate_parameters(s2, axis.low_value, axis.high_value, False) assert g2.binned == binned np.testing.assert_allclose(g2.function_nd(axis.axis) * factor, s2.data,0.16)
def test_estimate_parameters_binned(only_current, binned, lazy, uniform): s = Signal1D(np.empty((250, ))) s.axes_manager.signal_axes[0].is_binned = binned axis = s.axes_manager.signal_axes[0] axis.scale = .2 axis.offset = -15 g1 = Lorentzian(52342, 2, 10) s.data = g1.function(axis.axis) if not uniform: axis.convert_to_non_uniform_axis() if lazy: s = s.as_lazy() g2 = Lorentzian() if binned and uniform: factor = axis.scale elif binned: factor = np.gradient(axis.axis) else: factor = 1 assert g2.estimate_parameters(s, axis.low_value, axis.high_value, only_current=only_current) assert g2._axes_manager[-1].is_binned == binned np.testing.assert_allclose(g1.A.value, g2.A.value * factor, 0.1) assert abs(g2.centre.value - g1.centre.value) <= 0.2 assert abs(g2.gamma.value - g1.gamma.value) <= 0.1
def test_estimate_parameters_binned(only_current, binned, lazy): s = Signal1D(np.empty((250,))) s.metadata.Signal.binned = binned axis = s.axes_manager.signal_axes[0] axis.scale = .2 axis.offset = -15 g1 = Lorentzian(52342, 2, 10) s.data = g1.function(axis.axis) if lazy: s = s.as_lazy() g2 = Lorentzian() factor = axis.scale if binned else 1 assert g2.estimate_parameters(s, axis.low_value, axis.high_value, only_current=only_current) assert g2.binned == binned np.testing.assert_allclose(g1.A.value, g2.A.value * factor,0.1) assert abs(g2.centre.value - g1.centre.value) <= 0.2 assert abs(g2.gamma.value - g1.gamma.value) <= 0.1