def to_image(self): from hyperspy.signals.image import Image dic = self._get_signal_dict() dic['mapped_parameters']['record_by'] = 'image' dic['data'] = np.rollaxis(dic['data'], -1, 0) dic['axes'] = utils_varia.rollelem(dic['axes'], -1, 0) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 return Image(dic)
def to_image(self): from hyperspy.signals.image import Image dic = self._get_signal_dict() dic['mapped_parameters']['record_by'] = 'image' dic['data'] = np.rollaxis(dic['data'], -1, 0) dic['axes'] = utils_varia.rollelem(dic['axes'],-1,0) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 return Image(dic)
def to_image(self): from hyperspy.signals.image import Image dic = self._get_signal_dict() dic['mapped_parameters']['record_by'] = 'image' dic['data'] = np.rollaxis(dic['data'], -1, 0) dic['axes'] = utils_varia.rollelem(dic['axes'],-1,0) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 im = Image(dic) if hasattr(self, 'learning_results'): im.learning_results = copy.deepcopy(self.learning_results) im.learning_results._transpose_results() im.learning_results.original_shape = self.data.shape return im
def to_spectrum(self): from hyperspy.signals.spectrum import Spectrum dic = self._get_signal_dict() dim = len(self.data.shape) dic['mapped_parameters']['record_by'] = 'spectrum' dic['data'] = np.rollaxis(dic['data'], 0, dim) dic['axes'] = utils_varia.rollelem(dic['axes'],0, dim) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 sp = Spectrum(dic) sp.axes_manager._set_axes_index_in_array_from_position() if hasattr(self, 'learning_results'): sp.learning_results = copy.deepcopy(self.learning_results) sp.learning_results._transpose_results() sp.learning_results.original_shape = self.data.shape return sp
def to_spectrum(self, signal_axis=0): """Image to spectrum Parameters ---------- signal_axis : integer Selected the signal axis. Examples -------- >>> img = signals.Image({'data' : np.ones((3,4,5,6))}) >>> img <Image, title: , dimensions: (3L, 4L, 5L, 6L)> >>> img.to_spectrum() <Spectrum, title: , dimensions: (4L, 5L, 6L, 3L)> >>> img.to_spectrum(1) <Spectrum, title: , dimensions: (3L, 5L, 6L, 4L)> """ from hyperspy.signals.spectrum import Spectrum dic = self._get_signal_dict() dim = len(self.data.shape) dic['mapped_parameters']['record_by'] = 'spectrum' dic['data'] = np.rollaxis(dic['data'], signal_axis, dim) dic['axes'] = utils_varia.rollelem(dic['axes'], signal_axis, dim) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 sp = Spectrum(dic) sp.axes_manager._set_axes_index_in_array_from_position() if hasattr(self, 'learning_results'): if signal_axis != 0 and self.learning_results.loadings is not None: print("The learning results won't be transfered correctly") else : sp.learning_results = copy.deepcopy(self.learning_results) sp.learning_results._transpose_results() sp.learning_results.original_shape = self.data.shape sp.tmp_parameters = self.tmp_parameters.deepcopy() return sp
def to_image(self, signal_to_index=0): """Spectrum to image Parameters ---------- signal_to_index : integer Position to move the signal axis. Examples -------- >>> s = signals.Spectrum({'data' : np.ones((3,4,5,6))}) >>> s <Spectrum, title: , dimensions: (3L, 4L, 5L, 6L)> >>> s.to_image() <Image, title: , dimensions: (6L, 3L, 4L, 5L)> >>> s.to_image(1) <Image, title: , dimensions: (3L, 6L, 4L, 5L)> """ from hyperspy.signals.image import Image dic = self._get_signal_dict() dic['mapped_parameters']['record_by'] = 'image' dic['data'] = np.rollaxis(dic['data'], -1, signal_to_index) dic['axes'] = utils_varia.rollelem(dic['axes'],-1,signal_to_index) i = 0 for axis in dic['axes']: axis['index_in_array'] = i i += 1 im = Image(dic) if hasattr(self, 'learning_results'): if signal_to_index != 0 and self.learning_results.loadings is not None: print("The learning results won't be transfered correctly") else : im.learning_results = copy.deepcopy(self.learning_results) im.learning_results._transpose_results() im.learning_results.original_shape = self.data.shape im.tmp_parameters = self.tmp_parameters.deepcopy() return im