예제 #1
0
 def setUp(self):
     s = signals.Spectrum(np.ones((5, 4, 3, 6)))
     for axis, name in zip(
             s.axes_manager._get_axes_in_natural_order(),
             ['x', 'y', 'z', 'E']):
         axis.name = name
     self.s = s
예제 #2
0
 def setUp(self):
     pl = components.PowerLaw()
     pl.A.value = 1e10
     pl.r.value = 3
     self.signal = signals.Spectrum(
         pl.function(np.arange(100, 200)))
     self.signal.axes_manager[0].offset = 100
     self.signal.metadata.Signal.binned = False
예제 #3
0
 def setup(self):
     offset = 3
     scale = 0.1
     x = np.arange(-offset, offset, scale)
     s = signals.Spectrum(np.sin(x))
     s.axes_manager[0].offset = x[0]
     s.axes_manager[0].scale = scale
     self.s = s
예제 #4
0
 def setUp(self):
     gaussian = components.Gaussian()
     gaussian.A.value = 10
     gaussian.centre.value = 10
     gaussian.sigma.value = 1
     self.signal = signals.Spectrum(
         gaussian.function(np.arange(0, 20, 0.01)))
     self.signal.axes_manager[0].scale = 0.01
     self.signal.metadata.Signal.binned = False
예제 #5
0
 def setup(self):
     # Some test require consistent random data for reference to be correct
     np.random.seed(0)
     s = signals.Spectrum(np.random.rand(5, 4, 3, 6))
     for axis, name in zip(
             s.axes_manager._get_axes_in_natural_order(),
             ['x', 'y', 'z', 'E']):
         axis.name = name
     self.s = s
예제 #6
0
 def setUp(self):
     s = signals.Spectrum(np.random.random((2, 3, 4, 5)))
     sa = s.axes_manager[-1]
     na = s.axes_manager[0]
     sa.offset = 100
     sa.scale = 0.1
     s.learning_results.factors = np.arange(5 * 5).reshape((5, 5))
     s.learning_results.loadings = np.arange(24 * 5).reshape((24, 5))
     s.learning_results.bss_factors = np.arange(5 * 2).reshape((5, 2))
     s.learning_results.bss_loadings = np.arange(24 * 2).reshape((24, 2))
     self.s = s
     self.na = na
     self.sa = sa