#TODO: support concatenating multiple datasets print 'script launched' try: from ia3n.util.mem import MemoryMonitor mem = MemoryMonitor() except ImportError: mem = None if mem: print 'memory usage on launch: '+str(mem.usage()) import numpy as np from optparse import OptionParser from galatea.s3c.hacky_multiclass_logistic import HackyMulticlassLogistic from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial from pylearn2.datasets.cifar10 import CIFAR10 from pylearn2.datasets.cifar100 import CIFAR100 import gc gc.collect() if mem: print 'memory usage after imports'+str(mem.usage()) def train_model(fold_train_X, fold_train_y, C): fold_train_X = np.cast['float64'](fold_train_X) model = HackyMulticlassLogistic(C).fit(fold_train_X, fold_train_y) gc.collect() return model def get_labels_and_fold_indices(cifar10, cifar100, stl10):
#TODO: support concatenating multiple datasets try: from ia3n.util.mem import MemoryMonitor mem = MemoryMonitor() except ImportError: mem = None if mem: print 'memory usage on launch: '+str(mem.usage()) import numpy as np import warnings from optparse import OptionParser try: from sklearn.svm import LinearSVC, SVC except ImportError: from scikits.learn.svm import LinearSVC, SVC from pylearn2.datasets.tl_challenge import TL_Challenge from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial import gc gc.collect() if mem: print 'memory usage after imports'+str(mem.usage()) def get_svm_type(C, one_against_many): if one_against_many: svm_type = LinearSVC(C=C) else: svm_type = SVC(kernel='linear',C=C) return svm_type
#TODO: support concatenating multiple datasets try: from ia3n.util.mem import MemoryMonitor mem = MemoryMonitor() except ImportError: mem = None import numpy as np import warnings from optparse import OptionParser try: from sklearn.svm import LinearSVC, SVC except ImportError: from scikits.learn.svm import LinearSVC, SVC from galatea.s3c.feature_loading import get_features from pylearn2.utils import serial from pylearn2.datasets.cifar10 import CIFAR10 import gc rng = np.random.RandomState([1,2,3]) def get_svm_type(C): svm_type = LinearSVC(C=C) return svm_type def subtrain(fold_train_X, fold_train_y, C): assert str(fold_train_X.dtype) == 'float32' #assert fold_train_X.flags.c_contiguous