예제 #1
0
def residual_worker(argtup):
    wx_list, word_list, fxs_list, maws_list, fx_to_vecs, int_rvec = argtup
    if int_rvec:
        agg_rvecs = np.empty((len(wx_list), fx_to_vecs.shape[1]),
                             dtype=np.int8)
    else:
        agg_rvecs = np.empty((len(wx_list), fx_to_vecs.shape[1]),
                             dtype=np.float)
    agg_flags = np.empty((len(wx_list), 1), dtype=np.bool)

    #for idx, wx in enumerate(wx_list):
    for idx in range(len(wx_list)):
        # wx = wx_list[idx]
        word = word_list[idx]
        fxs = fxs_list[idx]
        maws = maws_list[idx]
        vecs = fx_to_vecs.take(fxs, axis=0)

        _rvecs, _flags = smk_funcs.compute_rvec(vecs, word)
        # rvecs = _rvecs  # NOQA
        # error_flags = _flags  # NOQA
        _agg_rvec, _agg_flag = smk_funcs.aggregate_rvecs(_rvecs, maws, _flags)
        # Cast to integers for storage
        if int_rvec:
            _agg_rvec = smk_funcs.cast_residual_integer(_agg_rvec)
        agg_rvecs[idx] = _agg_rvec
        agg_flags[idx] = _agg_flag

    tup = (wx_list, fxs_list, maws_list, agg_rvecs, agg_flags)
    return tup
예제 #2
0
def make_agg_vecs(X, words, fx_to_vecs):
    word_list = ut.take(words, X.wx_list)
    dtype = np.int8 if X.int_rvec else np.float32
    dim = fx_to_vecs.shape[1]
    X.agg_rvecs = np.empty((len(X.wx_list), dim), dtype=dtype)
    X.agg_flags = np.empty((len(X.wx_list), 1), dtype=np.bool)
    for idx in range(len(X.wx_list)):
        word = word_list[idx]
        fxs = X.fxs_list[idx]
        maws = X.maws_list[idx]
        vecs = fx_to_vecs.take(fxs, axis=0)
        _rvecs, _flags = smk_funcs.compute_rvec(vecs, word)
        _agg_rvec, _agg_flag = smk_funcs.aggregate_rvecs(_rvecs, maws, _flags)
        if X.int_rvec:
            _agg_rvec = smk_funcs.cast_residual_integer(_agg_rvec)
        X.agg_rvecs[idx] = _agg_rvec
        X.agg_flags[idx] = _agg_flag
    return X
예제 #3
0
def run_asmk_script():
    with ut.embed_on_exception_context:  # NOQA
        """
    >>> from ibeis.algo.smk.script_smk import *
    """

  # NOQA

        # ==============================================
        # PREPROCESSING CONFIGURATION
        # ==============================================
        config = {
            # 'data_year': 2013,
            'data_year': None,
            'dtype': 'float32',
            # 'root_sift': True,
            'root_sift': False,
            # 'centering': True,
            'centering': False,
            'num_words': 2**16,
            #'num_words': 1E6
            #'num_words': 8000,
            'kmeans_impl': 'sklearn.mini',
            'extern_words': False,
            'extern_assign': False,
            'assign_algo': 'kdtree',
            'checks': 1024,
            'int_rvec': True,
            'only_xy': False,
        }
        # Define which params are relevant for which operations
        relevance = {}
        relevance['feats'] = ['dtype', 'root_sift', 'centering', 'data_year']
        relevance['words'] = relevance['feats'] + [
            'num_words', 'extern_words', 'kmeans_impl'
        ]
        relevance['assign'] = relevance['words'] + [
            'checks', 'extern_assign', 'assign_algo'
        ]
        # relevance['ydata'] = relevance['assign'] + ['int_rvec']
        # relevance['xdata'] = relevance['assign'] + ['only_xy', 'int_rvec']

        nAssign = 1

        class SMKCacher(ut.Cacher):
            def __init__(self, fname, ext='.cPkl'):
                relevant_params = relevance[fname]
                relevant_cfg = ut.dict_subset(config, relevant_params)
                cfgstr = ut.get_cfg_lbl(relevant_cfg)
                dbdir = ut.truepath('/raid/work/Oxford/')
                super(SMKCacher, self).__init__(fname,
                                                cfgstr,
                                                cache_dir=dbdir,
                                                ext=ext)

        # ==============================================
        # LOAD DATASET, EXTRACT AND POSTPROCESS FEATURES
        # ==============================================
        if config['data_year'] == 2007:
            data = load_oxford_2007()
        elif config['data_year'] == 2013:
            data = load_oxford_2013()
        elif config['data_year'] is None:
            data = load_oxford_ibeis()

        offset_list = data['offset_list']
        all_kpts = data['all_kpts']
        raw_vecs = data['all_vecs']
        query_uri_order = data['query_uri_order']
        data_uri_order = data['data_uri_order']
        # del data

        # ================
        # PRE-PROCESS
        # ================
        import vtool as vt

        # Alias names to avoid errors in interactive sessions
        proc_vecs = raw_vecs
        del raw_vecs

        feats_cacher = SMKCacher('feats', ext='.npy')
        all_vecs = feats_cacher.tryload()
        if all_vecs is None:
            if config['dtype'] == 'float32':
                print('Converting vecs to float32')
                proc_vecs = proc_vecs.astype(np.float32)
            else:
                proc_vecs = proc_vecs
                raise NotImplementedError('other dtype')

            if config['root_sift']:
                with ut.Timer('Apply root sift'):
                    np.sqrt(proc_vecs, out=proc_vecs)
                    vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs)

            if config['centering']:
                with ut.Timer('Apply centering'):
                    mean_vec = np.mean(proc_vecs, axis=0)
                    # Center and then re-normalize
                    np.subtract(proc_vecs, mean_vec[None, :], out=proc_vecs)
                    vt.normalize(proc_vecs, ord=2, axis=1, out=proc_vecs)

            if config['dtype'] == 'int8':
                smk_funcs

            all_vecs = proc_vecs
            feats_cacher.save(all_vecs)
        del proc_vecs

        # =====================================
        # BUILD VISUAL VOCABULARY
        # =====================================
        if config['extern_words']:
            words = data['words']
            assert config['num_words'] is None or len(
                words) == config['num_words']
        else:
            word_cacher = SMKCacher('words')
            words = word_cacher.tryload()
            if words is None:
                with ut.embed_on_exception_context:
                    if config['kmeans_impl'] == 'sklearn.mini':
                        import sklearn.cluster
                        rng = np.random.RandomState(13421421)
                        # init_size = int(config['num_words'] * 8)
                        init_size = int(config['num_words'] * 4)
                        # converged after 26043 iterations
                        clusterer = sklearn.cluster.MiniBatchKMeans(
                            config['num_words'],
                            init_size=init_size,
                            batch_size=1000,
                            compute_labels=False,
                            max_iter=20,
                            random_state=rng,
                            n_init=1,
                            verbose=1)
                        clusterer.fit(all_vecs)
                        words = clusterer.cluster_centers_
                    elif config['kmeans_impl'] == 'yael':
                        from yael import ynumpy
                        centroids, qerr, dis, assign, nassign = ynumpy.kmeans(
                            all_vecs,
                            config['num_words'],
                            init='kmeans++',
                            verbose=True,
                            output='all')
                        words = centroids
                    word_cacher.save(words)

        # =====================================
        # ASSIGN EACH VECTOR TO ITS NEAREST WORD
        # =====================================
        if config['extern_assign']:
            assert config[
                'extern_words'], 'need extern cluster to extern assign'
            idx_to_wxs = vt.atleast_nd(data['idx_to_wx'], 2)
            idx_to_maws = np.ones(idx_to_wxs.shape, dtype=np.float32)
            idx_to_wxs = np.ma.array(idx_to_wxs)
            idx_to_maws = np.ma.array(idx_to_maws)
        else:
            from ibeis.algo.smk import vocab_indexer
            vocab = vocab_indexer.VisualVocab(words)
            dassign_cacher = SMKCacher('assign')
            assign_tup = dassign_cacher.tryload()
            if assign_tup is None:
                vocab.flann_params['algorithm'] = config['assign_algo']
                vocab.build()
                # Takes 12 minutes to assign jegous vecs to 2**16 vocab
                with ut.Timer('assign vocab neighbors'):
                    _idx_to_wx, _idx_to_wdist = vocab.nn_index(
                        all_vecs, nAssign, checks=config['checks'])
                    if nAssign > 1:
                        idx_to_wxs, idx_to_maws = smk_funcs.weight_multi_assigns(
                            _idx_to_wx,
                            _idx_to_wdist,
                            massign_alpha=1.2,
                            massign_sigma=80.0,
                            massign_equal_weights=True)
                    else:
                        idx_to_wxs = np.ma.masked_array(_idx_to_wx,
                                                        fill_value=-1)
                        idx_to_maws = np.ma.ones(idx_to_wxs.shape,
                                                 fill_value=-1,
                                                 dtype=np.float32)
                        idx_to_maws.mask = idx_to_wxs.mask
                assign_tup = (idx_to_wxs, idx_to_maws)
                dassign_cacher.save(assign_tup)

        idx_to_wxs, idx_to_maws = assign_tup

        # Breakup vectors, keypoints, and word assignments by annotation
        wx_lists = [idx_to_wxs[l:r] for l, r in ut.itertwo(offset_list)]
        maw_lists = [idx_to_maws[l:r] for l, r in ut.itertwo(offset_list)]
        vecs_list = [all_vecs[l:r] for l, r in ut.itertwo(offset_list)]
        kpts_list = [all_kpts[l:r] for l, r in ut.itertwo(offset_list)]

        # =======================
        # FIND QUERY SUBREGIONS
        # =======================

        ibs, query_annots, data_annots, qx_to_dx = load_ordered_annots(
            data_uri_order, query_uri_order)
        daids = data_annots.aids
        qaids = query_annots.aids

        query_super_kpts = ut.take(kpts_list, qx_to_dx)
        query_super_vecs = ut.take(vecs_list, qx_to_dx)
        query_super_wxs = ut.take(wx_lists, qx_to_dx)
        query_super_maws = ut.take(maw_lists, qx_to_dx)
        # Mark which keypoints are within the bbox of the query
        query_flags_list = []
        only_xy = config['only_xy']
        for kpts_, bbox in zip(query_super_kpts, query_annots.bboxes):
            flags = kpts_inside_bbox(kpts_, bbox, only_xy=only_xy)
            query_flags_list.append(flags)

        print('Queries are crops of existing database images.')
        print('Looking at average percents')
        percent_list = [
            flags_.sum() / flags_.shape[0] for flags_ in query_flags_list
        ]
        percent_stats = ut.get_stats(percent_list)
        print('percent_stats = %s' % (ut.repr4(percent_stats), ))

        import vtool as vt
        query_kpts = vt.zipcompress(query_super_kpts, query_flags_list, axis=0)
        query_vecs = vt.zipcompress(query_super_vecs, query_flags_list, axis=0)
        query_wxs = vt.zipcompress(query_super_wxs, query_flags_list, axis=0)
        query_maws = vt.zipcompress(query_super_maws, query_flags_list, axis=0)

        # =======================
        # CONSTRUCT QUERY / DATABASE REPR
        # =======================

        # int_rvec = not config['dtype'].startswith('float')
        int_rvec = config['int_rvec']

        X_list = []
        _prog = ut.ProgPartial(length=len(qaids),
                               label='new X',
                               bs=True,
                               adjust=True)
        for aid, fx_to_wxs, fx_to_maws in _prog(
                zip(qaids, query_wxs, query_maws)):
            X = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec)
            X_list.append(X)

        # ydata_cacher = SMKCacher('ydata')
        # Y_list = ydata_cacher.tryload()
        # if Y_list is None:
        Y_list = []
        _prog = ut.ProgPartial(length=len(daids),
                               label='new Y',
                               bs=True,
                               adjust=True)
        for aid, fx_to_wxs, fx_to_maws in _prog(zip(daids, wx_lists,
                                                    maw_lists)):
            Y = new_external_annot(aid, fx_to_wxs, fx_to_maws, int_rvec)
            Y_list.append(Y)
        # ydata_cacher.save(Y_list)

        #======================
        # Add in some groundtruth

        print('Add in some groundtruth')
        for Y, nid in zip(Y_list, ibs.get_annot_nids(daids)):
            Y.nid = nid

        for X, nid in zip(X_list, ibs.get_annot_nids(qaids)):
            X.nid = nid

        for Y, qual in zip(Y_list, ibs.get_annot_quality_texts(daids)):
            Y.qual = qual

        #======================
        # Add in other properties
        for Y, vecs, kpts in zip(Y_list, vecs_list, kpts_list):
            Y.vecs = vecs
            Y.kpts = kpts

        imgdir = ut.truepath('/raid/work/Oxford/oxbuild_images')
        for Y, imgid in zip(Y_list, data_uri_order):
            gpath = ut.unixjoin(imgdir, imgid + '.jpg')
            Y.gpath = gpath

        for X, vecs, kpts in zip(X_list, query_vecs, query_kpts):
            X.kpts = kpts
            X.vecs = vecs

        #======================
        print('Building inverted list')
        daids = [Y.aid for Y in Y_list]
        # wx_list = sorted(ut.list_union(*[Y.wx_list for Y in Y_list]))
        wx_list = sorted(set.union(*[Y.wx_set for Y in Y_list]))
        assert daids == data_annots.aids
        assert len(wx_list) <= config['num_words']

        wx_to_aids = smk_funcs.invert_lists(daids, [Y.wx_list for Y in Y_list],
                                            all_wxs=wx_list)

        # Compute IDF weights
        print('Compute IDF weights')
        ndocs_total = len(daids)
        # Use only the unique number of words
        ndocs_per_word = np.array([len(set(wx_to_aids[wx])) for wx in wx_list])
        print('ndocs_perword stats: ' + ut.repr4(ut.get_stats(ndocs_per_word)))
        idf_per_word = smk_funcs.inv_doc_freq(ndocs_total, ndocs_per_word)
        wx_to_weight = dict(zip(wx_list, idf_per_word))
        print('idf stats: ' + ut.repr4(ut.get_stats(wx_to_weight.values())))

        # Filter junk
        Y_list_ = [Y for Y in Y_list if Y.qual != 'junk']

        # =======================
        # CHOOSE QUERY KERNEL
        # =======================
        params = {
            'asmk': dict(alpha=3.0, thresh=0.0),
            'bow': dict(),
            'bow2': dict(),
        }
        # method = 'bow'
        method = 'bow2'
        method = 'asmk'
        smk = SMK(wx_to_weight, method=method, **params[method])

        # Specific info for the type of query
        if method == 'asmk':
            # Make residual vectors
            if True:
                # The stacked way is 50x faster
                # TODO: extend for multi-assignment and record fxs
                flat_query_vecs = np.vstack(query_vecs)
                flat_query_wxs = np.vstack(query_wxs)
                flat_query_offsets = np.array(
                    [0] + ut.cumsum(ut.lmap(len, query_wxs)))

                flat_wxs_assign = flat_query_wxs
                flat_offsets = flat_query_offsets
                flat_vecs = flat_query_vecs
                tup = smk_funcs.compute_stacked_agg_rvecs(
                    words, flat_wxs_assign, flat_vecs, flat_offsets)
                all_agg_vecs, all_error_flags, agg_offset_list = tup
                if int_rvec:
                    all_agg_vecs = smk_funcs.cast_residual_integer(
                        all_agg_vecs)
                agg_rvecs_list = [
                    all_agg_vecs[l:r] for l, r in ut.itertwo(agg_offset_list)
                ]
                agg_flags_list = [
                    all_error_flags[l:r]
                    for l, r in ut.itertwo(agg_offset_list)
                ]

                for X, agg_rvecs, agg_flags in zip(X_list, agg_rvecs_list,
                                                   agg_flags_list):
                    X.agg_rvecs = agg_rvecs
                    X.agg_flags = agg_flags[:, None]

                flat_wxs_assign = idx_to_wxs
                flat_offsets = offset_list
                flat_vecs = all_vecs
                tup = smk_funcs.compute_stacked_agg_rvecs(
                    words, flat_wxs_assign, flat_vecs, flat_offsets)
                all_agg_vecs, all_error_flags, agg_offset_list = tup
                if int_rvec:
                    all_agg_vecs = smk_funcs.cast_residual_integer(
                        all_agg_vecs)

                agg_rvecs_list = [
                    all_agg_vecs[l:r] for l, r in ut.itertwo(agg_offset_list)
                ]
                agg_flags_list = [
                    all_error_flags[l:r]
                    for l, r in ut.itertwo(agg_offset_list)
                ]

                for Y, agg_rvecs, agg_flags in zip(Y_list, agg_rvecs_list,
                                                   agg_flags_list):
                    Y.agg_rvecs = agg_rvecs
                    Y.agg_flags = agg_flags[:, None]
            else:
                # This non-stacked way is about 500x slower
                _prog = ut.ProgPartial(label='agg Y rvecs',
                                       bs=True,
                                       adjust=True)
                for Y in _prog(Y_list_):
                    make_agg_vecs(Y, words, Y.vecs)

                _prog = ut.ProgPartial(label='agg X rvecs',
                                       bs=True,
                                       adjust=True)
                for X in _prog(X_list):
                    make_agg_vecs(X, words, X.vecs)
        elif method == 'bow2':
            # Hack for orig tf-idf bow vector
            nwords = len(words)
            for X in ut.ProgIter(X_list, label='make bow vector'):
                ensure_tf(X)
                bow_vector(X, wx_to_weight, nwords)

            for Y in ut.ProgIter(Y_list_, label='make bow vector'):
                ensure_tf(Y)
                bow_vector(Y, wx_to_weight, nwords)

        if method != 'bow2':
            for X in ut.ProgIter(X_list, 'compute X gamma'):
                X.gamma = smk.gamma(X)
            for Y in ut.ProgIter(Y_list_, 'compute Y gamma'):
                Y.gamma = smk.gamma(Y)

        # Execute matches (could go faster by enumerating candidates)
        scores_list = []
        for X in ut.ProgIter(X_list, label='query %s' % (smk, )):
            scores = [smk.kernel(X, Y) for Y in Y_list_]
            scores = np.array(scores)
            scores = np.nan_to_num(scores)
            scores_list.append(scores)

        import sklearn.metrics
        avep_list = []
        _iter = list(zip(scores_list, X_list))
        _iter = ut.ProgIter(_iter, label='evaluate %s' % (smk, ))
        for scores, X in _iter:
            truth = [X.nid == Y.nid for Y in Y_list_]
            avep = sklearn.metrics.average_precision_score(truth, scores)
            avep_list.append(avep)
        avep_list = np.array(avep_list)
        mAP = np.mean(avep_list)
        print('mAP  = %r' % (mAP, ))