def list_params(cls, expected_params=None): print("San Encoder:") SanEncoderEstimator.list_params(expected_params) print() print("Seq2Seq Decoder:") Seq2SeqDecoderEstimator.list_params(expected_params) print()
def __init__(self, model_dir="/tmp", params=dict(), config=None, scope="", is_mmi_model=False): self.encoder = SanEncoderEstimator( model_dir, params, config=config, scope=scope+"/encoder") self.decoder = Seq2SeqDecoderEstimator( model_dir, params, config=config, scope=scope+"/decoder", is_mmi_model=is_mmi_model) super().__init__([self.encoder, self.decoder], model_dir, params, config, scope)
def __init__(self, model_dir, params, config=None, scope="default"): self.core_encoder = Seq2SeqEncoderEstimator(model_dir, params, scope="core_encoder") self.ae_encoder = Seq2SeqEncoderEstimator(model_dir, params, scope="ae_encoder") self.noise = NoiseLayer(model_dir, params, scope="noise") self.decoder = Seq2SeqDecoderEstimator(model_dir, params, scope="decoder") self.core_model = EstimatorChain([self.core_encoder, self.decoder], model_dir, params, scope="core") self.noisy_core_model = EstimatorChain([self.core_encoder, self.noise, self.decoder], model_dir, params, scope="noisy_core") self.autoencoder = EstimatorChain([self.ae_encoder, self.noise, self.decoder], model_dir, params, scope="ae") self.loss_balance = [1.0, 1.0, 1.0, 1.0] super().__init__([self.core_model, self.noisy_core_model, self.autoencoder], model_dir, params, config=config, scope=scope)