예제 #1
0
파일: sdp.py 프로젝트: xyyeh/FloBaRoID
    def findFeasibleStdFromStd(self, idf, xStd):
        # type: (Identification, np._ArrayLike) -> (np._ArrayLike)
        ''' find closest feasible std solution for some std parameters (increases error) '''

        idable_params = sorted(list(set(idf.model.identified_params).difference(self.delete_cols)))
        delta = Matrix(idf.model.param_syms[idable_params])
        I = Identity

        #Pd = Matrix(idf.model.Pd)
        #delta_d = (Pd.T*delta)

        u = Symbol('u')
        U_delta = BlockMatrix([[Matrix([u]),       (xStd - delta).T],
                               [xStd - delta, I(len(idable_params))]])
        U_delta = U_delta.as_explicit()
        lmis = [LMI_PSD(U_delta)] + self.LMIs_marg
        variables = [u] + list(delta)
        objective_func = u

        prime = idf.model.xStdModel[idable_params]
        solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime)

        u = solution[0, 0]
        if u:
            print("SDP found std solution with {} error increase from previous solution".format(u))
        delta_star = np.matrix(solution[1:])
        xStd = np.squeeze(np.asarray(delta_star))

        return xStd
예제 #2
0
파일: sdp.py 프로젝트: xyyeh/FloBaRoID
    def findFeasibleStdFromFeasibleBase(self, idf, xBase):
        # type: (Identification, np._ArrayLike) -> None
        ''' find a std feasible solution for feasible base solution (exists by definition) while
            minimizing param distance to a-priori parameters
        '''

        with helpers.Timer() as t:
            I = Identity

            # symbols for std params
            idable_params = sorted(list(set(idf.model.identified_params).difference(self.delete_cols)))
            delta = Matrix(idf.model.param_syms[idable_params])

            # equations for base parameters expressed in independent std param symbols
            beta = idf.model.base_deps  #.applyfunc(lambda x: x.nsimplify())

            # add explicit constraints for each base param equation and estimated value
            D_base_val_blocks = []
            for i in range(idf.model.num_base_params):
                D_base_val_blocks.append(Matrix([beta[i] - (xBase[i] - self.epsilon_safemargin)]))
                D_base_val_blocks.append(Matrix([xBase[i] + (self.epsilon_safemargin - beta[i])]))
            self.D_blocks += D_base_val_blocks

            self.LMIs_marg = list([LMI_PSD(lm - self.epsilon_safemargin*eye(lm.shape[0])) for lm in self.D_blocks])

            # closest to CAD but ignore non_identifiable params
            sol_cad_dist = Matrix(idf.model.xStdModel[idable_params]) - delta
            u = Symbol('u')
            U_rho = BlockMatrix([[Matrix([u]), sol_cad_dist.T],
                                 [sol_cad_dist, I(len(idable_params))]])
            U_rho = U_rho.as_explicit()

            lmis = [LMI_PSD(U_rho)] + self.LMIs_marg
            variables = [u] + list(delta)
            objective_func = u   # 'find' problem

            xStd = np.delete(idf.model.xStd, self.delete_cols)
            old_dist = la.norm(idf.model.xStdModel[idable_params] - xStd)**2

            if idf.opt['checkAPrioriFeasibility']:
                self.checkFeasibility(idf.model.xStd)

            # don't use cvxopt atm because it won't use primal and fail anyway
            onlyUseDSDP = 1
            if not onlyUseDSDP:
                if idf.opt['verbose']:
                    print("Solving with cvxopt...", end=' ')
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=xStd)

            # try again with wider bounds and dsdp5 cmd line
            if onlyUseDSDP or state is not 'optimal':
                if idf.opt['verbose']:
                    print("Solving with dsdp5...", end=' ')
                sdp_helpers.solve_sdp = sdp_helpers.dsdp5
                # start at CAD data to find solution faster
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=xStd, wide_bounds=True)
                sdp_helpers.solve_sdp = sdp_helpers.cvxopt_conelp

            u = solution[0, 0]
            print("SDP found std solution with distance {} from CAD solution (compared to {})".format(u, old_dist))
            idf.model.xStd = np.squeeze(np.asarray(solution[1:]))

            # prepend apriori values for 0'th link non-identifiable variables
            for c in self.delete_cols:
                idf.model.xStd = np.insert(idf.model.xStd, c, 0)
            idf.model.xStd[self.delete_cols] = idf.model.xStdModel[self.delete_cols]

        if idf.opt['showTiming']:
            print("Constrained SDP optimization took %.03f sec." % (t.interval))
예제 #3
0
파일: sdp.py 프로젝트: xyyeh/FloBaRoID
    def identifyFeasibleStandardParametersDirect(self, idf):
        # type: (Identification) -> None
        ''' use SDP optimzation to solve constrained OLS to find globally optimal physically
            feasible std parameters. Based on code from Sousa, 2014
        '''
        with helpers.Timer() as t:
            #if idf.opt['useAPriori']:
            #    print("Please disable using a priori parameters when using constrained optimization.")
            #    sys.exit(1)

            if idf.opt['verbose']:
                print("Preparing SDP...")

            # build OLS matrix
            I = Identity
            delta = Matrix(idf.model.param_syms)

            YStd = idf.model.YStd #idf.YStd_nonsing
            tau = idf.model.torques_stack

            p_nid = idf.model.non_id
            if idf.opt['useRegressorRegularization'] and len(p_nid):
                #p_nid = list(set(p_nid).difference(set(self.delete_cols)))
                #l = [0.001]*len(p_nid)
                l = [(float(idf.base_error) / len(p_nid)) * 1.5]*len(p_nid)   #proportion of distance term
                YStd = np.vstack((YStd, (l*np.identity(idf.model.num_identified_params)[p_nid].T).T))
                tau = np.concatenate((tau, l*idf.model.xStdModel[p_nid]))

            for c in reversed(self.delete_cols):
                delta.row_del(c)
            YStd = np.delete(YStd, self.delete_cols, axis=1)

            Q, R = la.qr(YStd)
            Q1 = Q[:, 0:idf.model.num_identified_params]
            #Q2 = Q[:, idf.model.num_base_params:]
            rho1 = Q1.T.dot(tau)
            R1 = np.matrix(R[:idf.model.num_identified_params, :idf.model.num_identified_params])

            # OLS: minimize ||tau - Y*x_base||^2 (simplify)=> minimize ||rho1.T - R1*K*delta||^2
            # add contact forces
            if idf.opt['useRegressorRegularization']:
                contactForcesSum = np.concatenate((idf.model.contactForcesSum, np.zeros(len(p_nid))))
            else:
                contactForcesSum = idf.model.contactForcesSum
            contactForces = Matrix(Q.T.dot(contactForcesSum))

            if idf.opt['verbose'] > 1:
                print("Step 1...", time.ctime())

            # minimize estimation error of to-be-found parameters delta
            # (regressor dot std variables projected to base - contacts should be close to measured torques)
            e_rho1 = Matrix(rho1 - contactForces) - (R1*delta)

            if idf.opt['verbose'] > 1:
                print("Step 2...", time.ctime())

            # calc estimation error of previous OLS parameter solution
            rho2_norm_sqr = la.norm(idf.model.torques_stack - idf.model.YBase.dot(idf.model.xBase))**2

            # (this is the slow part when matrices get bigger, BlockMatrix or as_explicit?)
            u = Symbol('u')
            U_rho = BlockMatrix([[Matrix([u - rho2_norm_sqr]),      e_rho1.T],
                                 [e_rho1, I(idf.model.num_identified_params)]])

            if idf.opt['verbose'] > 1:
                print("Step 3...", time.ctime())
            U_rho = U_rho.as_explicit()

            if idf.opt['verbose'] > 1:
                print("Step 4...", time.ctime())

            if idf.opt['verbose']:
                print("Add constraint LMIs")
            lmis = [LMI_PSD(U_rho)] + self.LMIs_marg
            variables = [u] + list(delta)

            #solve SDP
            objective_func = u

            if idf.opt['verbose']:
                print("Solving constrained OLS as SDP")

            # start at CAD data, might increase convergence speed (atm only works with dsdp5,
            # otherwise returns primal as solution when failing)
            prime = idf.model.xStdModel
            solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime)

            #try again with wider bounds and dsdp5 cmd line
            if state is not 'optimal':
                print("Trying again with dsdp5 solver")
                sdp_helpers.solve_sdp = sdp_helpers.dsdp5
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime, wide_bounds=True)
                sdp_helpers.solve_sdp = sdp_helpers.cvxopt_conelp

            u = solution[0,0]
            if u:
                print("SDP found std solution with {} squared residual error".format(u))
            delta_star = np.matrix(solution[1:])
            idf.model.xStd = np.squeeze(np.asarray(delta_star))

            #prepend apriori values for 0'th link non-identifiable variables
            for c in self.delete_cols:
                idf.model.xStd = np.insert(idf.model.xStd, c, 0)
            idf.model.xStd[self.delete_cols] = idf.model.xStdModel[self.delete_cols]

        if idf.opt['showTiming']:
            print("Constrained SDP optimization took %.03f sec." % (t.interval))
예제 #4
0
파일: sdp.py 프로젝트: xyyeh/FloBaRoID
    def identifyFeasibleBaseParameters(self, idf):
        # type: (Identification) -> None
        ''' use SDP optimization to solve OLS to find physically feasible base parameters (i.e. for
            which a consistent std solution exists), based on code from github.com/cdsousa/wam7_dyn_ident
        '''
        with helpers.Timer() as t:
            if idf.opt['verbose']:
                print("Preparing SDP...")

            # build OLS matrix
            I = Identity

            # base and standard parameter symbols
            delta = Matrix(idf.model.param_syms)
            beta_symbs = idf.model.base_syms

            # permutation of std to base columns projection
            # (simplify to reduce 1.0 to 1 etc., important for replacement)
            Pb = Matrix(idf.model.Pb).applyfunc(lambda x: x.nsimplify())
            # permutation of std to non-identifiable columns (dependents)
            Pd = Matrix(idf.model.Pd).applyfunc(lambda x: x.nsimplify())

            # projection matrix from independents to dependents
            #Kd = Matrix(idf.model.linear_deps)
            #K = Matrix(idf.model.K).applyfunc(lambda x: x.nsimplify()) #(Pb.T + Kd * Pd.T)

            # equations for base parameters expressed in independent std param symbols
            #beta = K * delta
            beta = Matrix(idf.model.base_deps).applyfunc(lambda x: x.nsimplify())

            # std vars that occur in base params (as many as base params, so only the single ones or
            # chosen as independent ones)

            if idf.opt['useBasisProjection']:
                # determined through base matrix, which included other variables too
                # (find first variable in eq, chosen as independent here)
                delta_b_syms = []   # type: List[sympy.Symbol]
                for i in range(idf.model.base_deps.shape[0]):
                    for s in idf.model.base_deps[i].free_symbols:
                        if s not in delta_b_syms:
                            delta_b_syms.append(s)
                            break
                delta_b = Matrix(delta_b_syms)
            else:
                # determined through permutation matrix from QR (not correct if base matrix is orthogonalized afterwards)
                delta_b = Pb.T*delta

            # std variables that are dependent, i.e. their value is a combination of independent columns
            # (they don't appear in base params but in feasibility constraints)

            if idf.opt['useBasisProjection']:
                #determined from base eqns
                delta_not_d = idf.model.base_deps[0].free_symbols
                for e in idf.model.base_deps:
                    delta_not_d = delta_not_d.union(e.free_symbols)
                delta_d_syms = []
                for s in delta:
                    if s not in delta_not_d:
                        delta_d_syms.append(s)
                delta_d = Matrix(delta_d_syms)
            else:
                # determined through permutation matrix from QR (not correct if base matrix is orthogonalized afterwards)
                delta_d = Pd.T*delta

            # rewrite LMIs for base params

            if idf.opt['useBasisProjection']:
                # (Sousa code is assuming that delta_b for each eq has factor 1.0 in equations beta.
                # this is true if using Gautier dependency matrix, otherwise
                # correct is to properly transpose eqn base_n = a1*x1 + a2*x2 + ... +an*xn to
                # 1*xi = a1*x1/ai + a2*x2/ai + ... + an*xn/ai - base_n/ai )
                transposed_beta = Matrix([solve(beta[i], delta_b[i])[0] for i in range(len(beta))])
                self.varchange_dict = dict(zip(delta_b, beta_symbs + transposed_beta))

                #add free vars to variables for optimization
                for eq in transposed_beta:
                    for s in eq.free_symbols:
                        if s not in delta_d:
                            delta_d = delta_d.col_join(Matrix([s]))
            else:
                self.varchange_dict = dict(zip(delta_b, beta_symbs - (beta - delta_b)))

            DB_blocks = [self.mrepl(Di, self.varchange_dict) for Di in self.D_blocks]
            self.DB_LMIs_marg = list([LMI_PSD(lm - self.epsilon_safemargin*eye(lm.shape[0])) for lm in DB_blocks])

            Q, R = la.qr(idf.model.YBase)
            #Q1 = Q[:, 0:idf.model.num_base_params]
            #Q2 = Q[:, idf.model.num_base_params:]
            R1 = np.matrix(R[:idf.model.num_base_params, :idf.model.num_base_params])  # type: np.matrix[float]

            # OLS: minimize ||tau - Y*x_base||^2 (simplify)=> minimize ||rho1.T - R1*K*delta||^2
            rho1 = Q.T.dot(idf.model.torques_stack - idf.model.contactForcesSum)

            e_rho1 = Matrix(rho1) - (R1*beta_symbs)

            rho2_norm_sqr = la.norm(idf.model.torques_stack - idf.model.YBase.dot(idf.model.xBase))**2
            u = Symbol('u')
            U_rho = BlockMatrix([[Matrix([u - rho2_norm_sqr]), e_rho1.T],
                                 [e_rho1, I(idf.model.num_base_params)]])
            U_rho = U_rho.as_explicit()

            if idf.opt['verbose']:
                print("Add constraint LMIs")

            lmis = [LMI_PSD(U_rho)] + self.DB_LMIs_marg
            variables = [u] + list(beta_symbs) + list(delta_d)

            # solve SDP
            objective_func = u

            if idf.opt['verbose']:
                print("Solving constrained OLS as SDP")

            # start at CAD data, might increase convergence speed (atm only works with dsdp5.
            # with cvxopt, only returns primal as solution when failing)
            prime = np.concatenate((idf.model.xBaseModel, np.array(Pd.T*idf.model.xStdModel)[:,0]))

            onlyUseDSDP = 0
            if not onlyUseDSDP:
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime)

            #try again with wider bounds and dsdp5 cmd line
            if onlyUseDSDP or state is not 'optimal':
                print("Trying again with dsdp5 solver")
                sdp_helpers.solve_sdp = sdp_helpers.dsdp5
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime, wide_bounds=True)
                sdp_helpers.solve_sdp = sdp_helpers.cvxopt_conelp

            u = solution[0,0]
            if u:
                print("SDP found base solution with {} error increase from OLS solution".format(u))
            beta_star = np.matrix(solution[1:1+idf.model.num_base_params])  # type: np.matrix[float]

            idf.model.xBase = np.squeeze(np.asarray(beta_star))

        if idf.opt['showTiming']:
            print("Constrained SDP optimization took %.03f sec." % (t.interval))
예제 #5
0
파일: sdp.py 프로젝트: xyyeh/FloBaRoID
    def identifyFeasibleStandardParameters(self, idf):
        # type: (Identification) -> None
        ''' use SDP optimization to solve constrained OLS to find globally optimal physically
            feasible std parameters (not necessarily unique). Based on code from Sousa, 2014
        '''

        with helpers.Timer() as t:
            if idf.opt['verbose']:
                print("Preparing SDP...")

            I = Identity
            delta = Matrix(idf.model.param_syms[idf.model.identified_params])

            # ignore some params that are non-identifiable
            for c in reversed(self.delete_cols):
                delta.row_del(c)

            YBase = idf.model.YBase
            tau = idf.model.torques_stack   # always absolute torque values

            # get projection matrix so that xBase = K*xStd
            if idf.opt['useBasisProjection']:
                K = Matrix(idf.model.Binv)
            else:
                # Sousa: K = Pb.T + Kd * Pd.T (Kd==idf.model.linear_deps, [Pb Pd] == idf.model.Pp)
                # Pb = Matrix(idf.model.Pb) #.applyfunc(lambda x: x.nsimplify())
                # Pd = Matrix(idf.model.Pd) #.applyfunc(lambda x: x.nsimplify())
                K = Matrix(idf.model.K)  #(Pb.T + Kd * Pd.T)

            for c in reversed(self.delete_cols):
                K.col_del(c)

            Q, R = la.qr(YBase)
            Q1 = Q[:, 0:idf.model.num_base_params]
            R1 = np.matrix(R[:idf.model.num_base_params, :idf.model.num_base_params])
            rho1 = Q1.T.dot(tau)

            contactForces = Q.T.dot(idf.model.contactForcesSum)
            if idf.opt['useRegressorRegularization']:
                p_nid = idf.model.non_id
                p_nid = list(set(p_nid).difference(set(self.delete_cols)).intersection(set(idf.model.identified_params)))
                contactForces = np.concatenate((contactForces, np.zeros(len(p_nid))))

            if idf.opt['verbose'] > 1:
                print("Step 1...", time.ctime())

            # solving OLS: minimize ||tau - Y*x_base||^2 (simplify)=> minimize ||rho1.T - R1*K*delta||^2

            # get upper bound for regression error
            # rho2_norm_sqr = la.norm(Q2.T.dot(tau))**2 = 0
            # since we use QR if YBase, Q2 is empty anyway, so rho2 = Q2*tau following the paper is zero
            # the code from sousa's notebook includes a different calculation for the upper bound:
            rho2_norm_sqr = la.norm(idf.model.torques_stack - idf.model.contactForcesSum - idf.model.YBase.dot(idf.model.xBase))**2

            # get additional regression error
            if idf.opt['useRegressorRegularization'] and len(p_nid):
                # add regularization term to cost function to include torque estimation error and CAD distance
                # get symbols that are non-id but are not in delete_cols already
                delta_nonid = Matrix(idf.model.param_syms[p_nid])
                #num_samples = YBase.shape[0]/idf.model.num_dofs
                l = (float(idf.base_error) / len(p_nid)) * idf.opt['regularizationFactor']

                #TODO: also use symengine to gain speedup?
                #p = BlockMatrix([[(K*delta)], [delta_nonid]])
                #Y = BlockMatrix([[Matrix(R1),             ZeroMatrix(R1.shape[0], len(p_nid))],
                #                 [ZeroMatrix(len(p_nid), R1.shape[1]), l*Identity(len(p_nid))]])
                Y = BlockMatrix([[R1*(K*delta)],[l*Identity(len(p_nid))*delta_nonid]]).as_explicit()
                rho1_hat = np.concatenate((rho1, l*idf.model.xStdModel[p_nid]))
                e_rho1 = (Matrix(rho1_hat - contactForces) - Y)
            else:
                try:
                    from symengine import DenseMatrix as eMatrix
                    if idf.opt['verbose']:
                        print('using symengine')
                    edelta = eMatrix(delta.shape[0], delta.shape[1], delta)
                    eK = eMatrix(K.shape[0], K.shape[1], K)
                    eR1 = eMatrix(R1.shape[0], R1.shape[1], Matrix(R1))
                    Y = eR1*eK*edelta
                    e_rho1 = Matrix(eMatrix(rho1) - contactForces - Y)
                except ImportError:
                    if idf.opt['verbose']:
                        print('not using symengine')
                    Y = R1*(K*delta)
                    e_rho1 = Matrix(rho1 - contactForces) - Y

            if idf.opt['verbose'] > 1:
                print("Step 2...", time.ctime())

            # minimize estimation error of to-be-found parameters delta
            # (regressor dot std variables projected to base - contacts should be close to measured torques)
            u = Symbol('u')
            U_rho = BlockMatrix([[Matrix([u - rho2_norm_sqr]), e_rho1.T],
                                 [e_rho1,            I(e_rho1.shape[0])]])

            if idf.opt['verbose'] > 1:
                print("Step 3...", time.ctime())
            U_rho = U_rho.as_explicit()

            if idf.opt['verbose'] > 1:
                print("Step 4...", time.ctime())

            if idf.opt['verbose']:
                print("Add constraint LMIs")
            lmis = [LMI_PSD(U_rho)] + self.LMIs_marg
            variables = [u] + list(delta)
            objective_func = u

            # solve SDP

            # start at CAD data, might increase convergence speed (atm only works with dsdp5,
            # but is used to return primal as solution when failing cvxopt)
            if idf.opt['verbose']:
                print("Solving constrained OLS as SDP")
            idable_params = sorted(list(set(idf.model.identified_params).difference(self.delete_cols)))
            prime = idf.model.xStdModel[idable_params]

            if idf.opt['checkAPrioriFeasibility']:
                self.checkFeasibility(idf.model.xStdModel)

            idf.opt['onlyUseDSDP'] = 0
            if not idf.opt['onlyUseDSDP']:
                if idf.opt['verbose']:
                    print("Solving with cvxopt...", end=' ')
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime)

            # try again with wider bounds and dsdp5 cmd line
            if idf.opt['onlyUseDSDP'] or state is not 'optimal':
                if idf.opt['verbose']:
                    print("Solving with dsdp5...", end=' ')
                sdp_helpers.solve_sdp = sdp_helpers.dsdp5
                solution, state = sdp_helpers.solve_sdp(objective_func, lmis, variables, primalstart=prime, wide_bounds=True)
                sdp_helpers.solve_sdp = sdp_helpers.cvxopt_conelp

            u = solution[0, 0]
            if u:
                print("SDP found std solution with {} squared residual error".format(u))
            delta_star = np.matrix(solution[1:])  # type: np.matrix
            idf.model.xStd = np.squeeze(np.asarray(delta_star))

            # prepend apriori values for 0'th link non-identifiable variables
            for c in self.delete_cols:
                idf.model.xStd = np.insert(idf.model.xStd, c, 0)
            idf.model.xStd[self.delete_cols] = idf.model.xStdModel[self.delete_cols]

        if idf.opt['showTiming']:
            print("Constrained SDP optimization took %.03f sec." % (t.interval))