def test_LeaveOneOut(): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) loo = LeaveOneOut() with pytest.raises(ValueError): next(loo.split(data)) # Each user only has 1 item so trainsets fail reader = Reader('ml-100k') custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/u1_ml100k_test') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) # Test random_state parameter # If random_state is None, you get different split each time (conditioned # by rng of course) loo = LeaveOneOut(random_state=None) testsets_a = [testset for (_, testset) in loo.split(data)] testsets_b = [testset for (_, testset) in loo.split(data)] assert testsets_a != testsets_b # Repeated called to split when random_state is set lead to the same folds loo = LeaveOneOut(random_state=1) testsets_a = [testset for (_, testset) in loo.split(data)] testsets_b = [testset for (_, testset) in loo.split(data)] assert testsets_a == testsets_b # Make sure only one rating per user is present in the testset loo = LeaveOneOut() for _, testset in loo.split(data): cnt = Counter([uid for (uid, _, _) in testset]) assert all(val == 1 for val in itervalues(cnt)) # test the min_n_ratings parameter loo = LeaveOneOut(min_n_ratings=5) for trainset, _ in loo.split(data): assert all(len(ratings) >= 5 for ratings in itervalues(trainset.ur)) loo = LeaveOneOut(min_n_ratings=10) for trainset, _ in loo.split(data): assert all(len(ratings) >= 10 for ratings in itervalues(trainset.ur)) loo = LeaveOneOut(min_n_ratings=10000) # too high with pytest.raises(ValueError): next(loo.split(data))
def test_gridsearchcv_same_splits(): """Ensure that all parameter combinations are tested on the same splits (we check their RMSE scores are the same once averaged over the splits, which should be enough). We use as much parallelism as possible.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, reader=Reader('ml-100k')) kf = KFold(3, shuffle=True, random_state=4) # all RMSE should be the same (as param combinations are the same) param_grid = { 'n_epochs': [5], 'lr_all': [.2, .2], 'reg_all': [.4, .4], 'n_factors': [5], 'random_state': [0] } gs = GridSearchCV(SVD, param_grid, measures=['RMSE'], cv=kf, n_jobs=1) gs.fit(data) rmse_scores = [m for m in gs.cv_results['mean_test_rmse']] assert len(set(rmse_scores)) == 1 # assert rmse_scores are all equal # Note: actually, even when setting random_state=None in kf, the same folds # are used because we use product(param_comb, kf.split(...)). However, it's # needed to have the same folds when calling fit again: gs.fit(data) rmse_scores += [m for m in gs.cv_results['mean_test_rmse']] assert len(set(rmse_scores)) == 1 # assert rmse_scores are all equal
def test_unknown_user_or_item(): """Ensure that all algorithms act gracefully when asked to predict a rating of an unknown user, an unknown item, and when both are unknown. """ reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) file_path = os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset' data = Dataset.load_from_file(file_path=file_path, reader=reader) trainset = data.build_full_trainset() klasses = (NormalPredictor, BaselineOnly, KNNBasic, KNNWithMeans, KNNBaseline, SVD, SVDpp, NMF, SlopeOne, CoClustering, KNNWithZScore) for klass in klasses: algo = klass() algo.fit(trainset) algo.predict('user0', 'unknown_item', None) algo.predict('unkown_user', 'item0', None) algo.predict('unkown_user', 'unknown_item', None) # unrelated, but test the fit().test() one-liner: trainset, testset = train_test_split(data, test_size=2) for klass in klasses: algo = klass() algo.fit(trainset).test(testset) with pytest.warns(UserWarning): algo.train(trainset).test(testset)
def test_build_full_trainset(): """Test the build_full_trainset method.""" custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) trainset = data.build_full_trainset() assert len(trainset.ur) == 5 assert len(trainset.ir) == 2 assert trainset.n_users == 5 assert trainset.n_items == 2
def test_train_test_split(): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) # test test_size to int and train_size to None (complement) trainset, testset = train_test_split(data, test_size=2, train_size=None) assert len(testset) == 2 assert trainset.n_ratings == 3 # test test_size to float and train_size to None (complement) trainset, testset = train_test_split(data, test_size=.2, train_size=None) assert len(testset) == 1 assert trainset.n_ratings == 4 # test test_size to int and train_size to int trainset, testset = train_test_split(data, test_size=2, train_size=3) assert len(testset) == 2 assert trainset.n_ratings == 3 # test test_size to None (complement) and train_size to int trainset, testset = train_test_split(data, test_size=None, train_size=2) assert len(testset) == 3 assert trainset.n_ratings == 2 # test test_size to None (complement) and train_size to float trainset, testset = train_test_split(data, test_size=None, train_size=.2) assert len(testset) == 4 assert trainset.n_ratings == 1 # Test random_state parameter # If random_state is None, you get different split each time (conditioned # by rng of course) _, testset_a = train_test_split(data, random_state=None) _, testset_b = train_test_split(data, random_state=None) assert testset_a != testset_b # Repeated called to split when random_state is set lead to the same folds _, testset_a = train_test_split(data, random_state=1) _, testset_b = train_test_split(data, random_state=1) assert testset_a == testset_b # Test shuffle parameter, if False then splits are the same regardless of # random_state. _, testset_a = train_test_split(data, random_state=1, shuffle=None) _, testset_b = train_test_split(data, random_state=1, shuffle=None) assert testset_a == testset_b
def test_no_call_to_split(): """Ensure, as mentioned in the split() docstring, that even if split is not called then the data is split with 5 folds after being shuffled.""" custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) with pytest.warns(UserWarning): assert len(list(data.folds())) == 5 # make sure data has been shuffled. If not shuffled, the users in the # testsets would be 0, 1, 2... 4 (in that order). with pytest.warns(UserWarning): users = [int(testset[0][0][-1]) for (_, testset) in data.folds()] assert users != list(range(5))
def test_split(): """Test the split method.""" custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) # Test the shuffle parameter # Make sure data has not been shuffled. If not shuffled, the users in the # testsets are 0, 1, 2... 4 (in that order). with pytest.warns(UserWarning): data.split(n_folds=5, shuffle=False) users = [int(testset[0][0][-1]) for (_, testset) in data.folds()] assert users == list(range(5)) # Test the shuffle parameter # Make sure that when called two times without shuffling, folds are the # same. with pytest.warns(UserWarning): data.split(n_folds=3, shuffle=False) testsets_a = [testset for (_, testset) in data.folds()] data.split(n_folds=3, shuffle=False) testsets_b = [testset for (_, testset) in data.folds()] assert testsets_a == testsets_b # We'll now shuffle b and check that folds are different. with pytest.warns(UserWarning): data.split(n_folds=3, shuffle=True) testsets_b = [testset for (_, testset) in data.folds()] assert testsets_a != testsets_b # Ensure that folds are the same if split is not called again with pytest.warns(UserWarning): testsets_a = [testset for (_, testset) in data.folds()] testsets_b = [testset for (_, testset) in data.folds()] assert testsets_a == testsets_b # Test n_folds parameter with pytest.warns(UserWarning): data.split(5) assert len(list(data.folds())) == 5 with pytest.raises(ValueError): data.split(10) # Too big (greater than number of ratings) with pytest.raises(ValueError): data.split(1) # Too low (must be >= 2)
def test_nearest_neighbors(): """Ensure the nearest neighbors are different when using user-user similarity vs item-item.""" reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) data_file = os.path.dirname(os.path.realpath(__file__)) + '/custom_train' data = Dataset.load_from_file(data_file, reader) trainset = data.build_full_trainset() algo_ub = KNNBasic(sim_options={'user_based': True}) algo_ub.fit(trainset) algo_ib = KNNBasic(sim_options={'user_based': False}) algo_ib.fit(trainset) assert algo_ub.get_neighbors(0, k=10) != algo_ib.get_neighbors(0, k=10)
def test_cross_validate(): # First test with a specified CV iterator. current_dir = os.path.dirname(os.path.realpath(__file__)) folds_files = [(current_dir + '/custom_train', current_dir + '/custom_test')] reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) data = Dataset.load_from_folds(folds_files=folds_files, reader=reader) algo = NormalPredictor() pkf = ms.PredefinedKFold() ret = ms.cross_validate(algo, data, measures=['rmse', 'mae'], cv=pkf, verbose=1) # Basically just test that keys (dont) exist as they should assert len(ret['test_rmse']) == 1 assert len(ret['test_mae']) == 1 assert len(ret['fit_time']) == 1 assert len(ret['test_time']) == 1 assert 'test_fcp' not in ret assert 'train_rmse' not in ret assert 'train_mae' not in ret # Test that 5 fold CV is used when cv=None # Also check that train_* key exist when return_train_measures is True. data = Dataset.load_from_file(current_dir + '/custom_dataset', reader) ret = ms.cross_validate(algo, data, measures=['rmse', 'mae'], cv=None, return_train_measures=True, verbose=True) assert len(ret['test_rmse']) == 5 assert len(ret['test_mae']) == 5 assert len(ret['fit_time']) == 5 assert len(ret['test_time']) == 5 assert len(ret['train_rmse']) == 5 assert len(ret['train_mae']) == 5
def test_same_splits(): """Ensure that all parameter combinations are tested on the same splits (we check that average RMSE scores are the same, which should be enough).""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') data = Dataset.load_from_file(data_file, reader=Reader('ml-100k')) data.split(3) # all RMSE should be the same (as param combinations are the same) param_grid = {'n_epochs': [1, 1], 'lr_all': [.5, .5]} with pytest.warns(UserWarning): grid_search = GridSearch(SVD, param_grid, measures=['RMSE'], n_jobs=-1) grid_search.evaluate(data) scores = ['%.1f' % s['RMSE'] for s in grid_search.cv_results['scores']] assert len(set(scores)) == 1 # assert rmse_scores are all equal # evaluate grid search again, to make sure that splits are still the same. grid_search.evaluate(data) scores += ['%.1f' % s['RMSE'] for s in grid_search.cv_results['scores']] assert len(set(scores)) == 1
def test_RepeatedCV(): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) # test n_splits and n_repeats parameters rkf = RepeatedKFold(n_splits=3, n_repeats=2) assert len(list(rkf.split(data))) == 3 * 2 rkf = RepeatedKFold(n_splits=3, n_repeats=4) assert len(list(rkf.split(data))) == 3 * 4 rkf = RepeatedKFold(n_splits=4, n_repeats=3) assert len(list(rkf.split(data))) == 4 * 3 # Make sure folds different between 2 repetitions (even if # random_state is set, random_state controls the whole sequence) rkf = RepeatedKFold(n_splits=3, n_repeats=2, random_state=3) testsets = list(testset for (_, testset) in rkf.split(data)) for i in range(3): assert testsets[i] != testsets[i + 3] # Make sure folds are same when same cv iterator is called on same data (if # random_state is set) rkf = RepeatedKFold(n_splits=3, n_repeats=2, random_state=3) testsets_a = list(testset for (_, testset) in rkf.split(data)) testsets_b = list(testset for (_, testset) in rkf.split(data)) assert testsets_a == testsets_b # Make sure folds are different when random_state is None rkf = RepeatedKFold(n_splits=3, n_repeats=2, random_state=None) testsets_a = list(testset for (_, testset) in rkf.split(data)) testsets_b = list(testset for (_, testset) in rkf.split(data)) assert testsets_a != testsets_b
def test_KFold(): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) # Test n_folds parameter kf = KFold(n_splits=5) assert len(list(kf.split(data))) == 5 with pytest.raises(ValueError): kf = KFold(n_splits=10) next(kf.split(data)) # Too big (greater than number of ratings) with pytest.raises(ValueError): kf = KFold(n_splits=1) next(kf.split(data)) # Too low (must be >= 2) # Make sure data has not been shuffled. If not shuffled, the users in the # testsets are 0, 1, 2... 4 (in that order). kf = KFold(n_splits=5, shuffle=False) users = [int(testset[0][0][-1]) for (_, testset) in kf.split(data)] assert users == list(range(5)) # Make sure that when called two times without shuffling, folds are the # same. kf = KFold(n_splits=5, shuffle=False) testsets_a = [testset for (_, testset) in kf.split(data)] testsets_b = [testset for (_, testset) in kf.split(data)] assert testsets_a == testsets_b # test once again with another KFold instance kf = KFold(n_splits=5, shuffle=False) testsets_a = [testset for (_, testset) in kf.split(data)] assert testsets_a == testsets_b # We'll now shuffle b and check that folds are different. # (this is conditioned by seed setting at the beginning of file) kf = KFold(n_splits=5, random_state=None, shuffle=True) testsets_b = [testset for (_, testset) in kf.split(data)] assert testsets_a != testsets_b # test once again: two calls to kf.split make different splits when # random_state=None testsets_a = [testset for (_, testset) in kf.split(data)] assert testsets_a != testsets_b # Make sure that folds are the same when same KFold instance is used with # suffle is True but random_state is set to some value kf = KFold(n_splits=5, random_state=1, shuffle=True) testsets_a = [testset for (_, testset) in kf.split(data)] testsets_b = [testset for (_, testset) in kf.split(data)] assert testsets_a == testsets_b # Make sure raw ratings are not shuffled by KFold old_raw_ratings = copy(data.raw_ratings) kf = KFold(n_splits=5, shuffle=True) next(kf.split(data)) assert old_raw_ratings == data.raw_ratings # Make sure kf.split() and the old data.split() have the same folds. np.random.seed(3) with pytest.warns(UserWarning): data.split(2, shuffle=True) testsets_a = [testset for (_, testset) in data.folds()] kf = KFold(n_splits=2, random_state=3, shuffle=True) testsets_b = [testset for (_, testset) in kf.split(data)]
def test_randomizedsearchcv_refit(): """Test refit method of RandomizedSearchCV class.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, Reader('ml-100k')) param_distributions = { 'n_epochs': [5], 'lr_all': uniform(0.002, 0.003), 'reg_all': uniform(0.4, 0.2), 'n_factors': [2] } # assert rs.fit() and rs.test will use best estimator for mae (first # appearing in measures) rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=True) rs.fit(data) rs_preds = rs.test(data.construct_testset(data.raw_ratings)) mae_preds = rs.best_estimator['mae'].test( data.construct_testset(data.raw_ratings)) assert rs_preds == mae_preds # assert rs.fit() and rs.test will use best estimator for rmse rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit='rmse') rs.fit(data) rs_preds = rs.test(data.construct_testset(data.raw_ratings)) rmse_preds = rs.best_estimator['rmse'].test( data.construct_testset(data.raw_ratings)) assert rs_preds == rmse_preds # test that predict() can be called rs.predict(2, 4) # assert test() and predict() cannot be used when refit is false rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=False) rs.fit(data) with pytest.raises(ValueError): rs.test(data.construct_testset(data.raw_ratings)) with pytest.raises(ValueError): rs.predict('1', '2') # test that error is raised if used with load_from_folds train_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') test_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_folds([(train_file, test_file)], Reader('ml-100k')) rs = RandomizedSearchCV(SVD, param_distributions, measures=['mae', 'rmse'], cv=2, refit=True) with pytest.raises(ValueError): rs.fit(data)
def test_gridsearchcv_refit(): """Test refit function of GridSearchCV.""" data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(data_file, Reader('ml-100k')) param_grid = { 'n_epochs': [5], 'lr_all': [0.002, 0.005], 'reg_all': [0.4, 0.6], 'n_factors': [2] } # assert gs.fit() and gs.test will use best estimator for mae (first # appearing in measures) gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=True) gs.fit(data) gs_preds = gs.test(data.construct_testset(data.raw_ratings)) mae_preds = gs.best_estimator['mae'].test( data.construct_testset(data.raw_ratings)) assert gs_preds == mae_preds # assert gs.fit() and gs.test will use best estimator for rmse gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit='rmse') gs.fit(data) gs_preds = gs.test(data.construct_testset(data.raw_ratings)) rmse_preds = gs.best_estimator['rmse'].test( data.construct_testset(data.raw_ratings)) assert gs_preds == rmse_preds # test that predict() can be called gs.predict(2, 4) # assert test() and predict() cannot be used when refit is false gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=False) gs.fit(data) with pytest.raises(ValueError): gs_preds = gs.test(data.construct_testset(data.raw_ratings)) with pytest.raises(ValueError): gs.predict('1', '2') # test that error is raised if used with load_from_folds train_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') test_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_folds([(train_file, test_file)], Reader('ml-100k')) gs = GridSearchCV(SVD, param_grid, measures=['mae', 'rmse'], cv=2, refit=True) with pytest.raises(ValueError): gs.fit(data)
'''Testing renaming of train() into fit()''' import os import pytest from idly import Dataset from idly import Reader from idly import AlgoBase from idly.model_selection import KFold data_file = os.path.join(os.path.dirname(__file__), './u1_ml100k_train') data = Dataset.load_from_file(data_file, Reader('ml-100k')) kf = KFold(n_splits=2) def test_new_style_algo(): '''Test that new algorithms (i.e. algoritms that only define fit()) can support both calls to fit() and to train() - algo.fit() is the new way of doing things - supporting algo.train() is needed for the (unlikely?) case where a user has defined custom tools that use algo.train(). ''' class CustomAlgoFit(AlgoBase): def __init__(self): AlgoBase.__init__(self) self.cnt = -1 def fit(self, trainset):
def test_ShuffleSplit(): reader = Reader(line_format='user item rating', sep=' ', skip_lines=3, rating_scale=(1, 5)) custom_dataset_path = (os.path.dirname(os.path.realpath(__file__)) + '/custom_dataset') data = Dataset.load_from_file(file_path=custom_dataset_path, reader=reader) with pytest.raises(ValueError): ss = ShuffleSplit(n_splits=0) with pytest.raises(ValueError): ss = ShuffleSplit(test_size=10) next(ss.split(data)) with pytest.raises(ValueError): ss = ShuffleSplit(train_size=10) next(ss.split(data)) with pytest.raises(ValueError): ss = ShuffleSplit(test_size=3, train_size=3) next(ss.split(data)) with pytest.raises(ValueError): ss = ShuffleSplit(test_size=3, train_size=0) next(ss.split(data)) with pytest.raises(ValueError): ss = ShuffleSplit(test_size=0, train_size=3) next(ss.split(data)) # No need to cover the entire dataset ss = ShuffleSplit(test_size=1, train_size=1) next(ss.split(data)) # test test_size to int and train_size to None (complement) ss = ShuffleSplit(test_size=1) assert all(len(testset) == 1 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 4 for (trainset, _) in ss.split(data)) # test test_size to float and train_size to None (complement) ss = ShuffleSplit(test_size=.2) # 20% of 5 = 1 assert all(len(testset) == 1 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 4 for (trainset, _) in ss.split(data)) # test test_size to int and train_size to int ss = ShuffleSplit(test_size=2, train_size=2) assert all(len(testset) == 2 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 2 for (trainset, _) in ss.split(data)) # test test_size to None (complement) and train_size to int ss = ShuffleSplit(test_size=None, train_size=2) assert all(len(testset) == 3 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 2 for (trainset, _) in ss.split(data)) # test test_size to None (complement) and train_size to float ss = ShuffleSplit(test_size=None, train_size=.2) assert all(len(testset) == 4 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 1 for (trainset, _) in ss.split(data)) # test default parameters: 5 splits, test_size = .2, train_size = None ss = ShuffleSplit() assert len(list(ss.split(data))) == 5 assert all(len(testset) == 1 for (_, testset) in ss.split(data)) assert all(trainset.n_ratings == 4 for (trainset, _) in ss.split(data)) # Test random_state parameter # If random_state is None, you get different split each time (conditioned # by rng of course) ss = ShuffleSplit(random_state=None) testsets_a = [testset for (_, testset) in ss.split(data)] testsets_b = [testset for (_, testset) in ss.split(data)] assert testsets_a != testsets_b # Repeated called to split when random_state is set lead to the same folds ss = ShuffleSplit(random_state=1) testsets_a = [testset for (_, testset) in ss.split(data)] testsets_b = [testset for (_, testset) in ss.split(data)] assert testsets_a == testsets_b # Test shuffle parameter, if False then splits are the same regardless of # random_state. ss = ShuffleSplit(random_state=1, shuffle=False) testsets_a = [testset for (_, testset) in ss.split(data)] testsets_b = [testset for (_, testset) in ss.split(data)] assert testsets_a == testsets_b
def test_randomizedsearchcv_cv_results(): """Test the cv_results attribute""" f = os.path.join(os.path.dirname(__file__), './u1_ml100k_test') data = Dataset.load_from_file(f, Reader('ml-100k')) kf = KFold(3, shuffle=True, random_state=4) param_distributions = { 'n_epochs': [5], 'lr_all': uniform(.2, .3), 'reg_all': uniform(.4, .3), 'n_factors': [5], 'random_state': [0] } n_iter = 5 rs = RandomizedSearchCV(SVD, param_distributions, n_iter=n_iter, measures=['RMSE', 'mae'], cv=kf, return_train_measures=True) rs.fit(data) # test keys split*_test_rmse, mean and std dev. assert rs.cv_results['split0_test_rmse'].shape == (n_iter, ) assert rs.cv_results['split1_test_rmse'].shape == (n_iter, ) assert rs.cv_results['split2_test_rmse'].shape == (n_iter, ) assert rs.cv_results['mean_test_rmse'].shape == (n_iter, ) assert np.allclose( rs.cv_results['mean_test_rmse'], np.mean([ rs.cv_results['split0_test_rmse'], rs.cv_results['split1_test_rmse'], rs.cv_results['split2_test_rmse'] ], axis=0)) assert np.allclose( rs.cv_results['std_test_rmse'], np.std([ rs.cv_results['split0_test_rmse'], rs.cv_results['split1_test_rmse'], rs.cv_results['split2_test_rmse'] ], axis=0)) # test keys split*_train_mae, mean and std dev. assert rs.cv_results['split0_train_rmse'].shape == (n_iter, ) assert rs.cv_results['split1_train_rmse'].shape == (n_iter, ) assert rs.cv_results['split2_train_rmse'].shape == (n_iter, ) assert rs.cv_results['mean_train_rmse'].shape == (n_iter, ) assert np.allclose( rs.cv_results['mean_train_rmse'], np.mean([ rs.cv_results['split0_train_rmse'], rs.cv_results['split1_train_rmse'], rs.cv_results['split2_train_rmse'] ], axis=0)) assert np.allclose( rs.cv_results['std_train_rmse'], np.std([ rs.cv_results['split0_train_rmse'], rs.cv_results['split1_train_rmse'], rs.cv_results['split2_train_rmse'] ], axis=0)) # test fit and train times dimensions. assert rs.cv_results['mean_fit_time'].shape == (n_iter, ) assert rs.cv_results['std_fit_time'].shape == (n_iter, ) assert rs.cv_results['mean_test_time'].shape == (n_iter, ) assert rs.cv_results['std_test_time'].shape == (n_iter, ) assert rs.cv_results['params'] is rs.param_combinations # assert that best parameter in rs.cv_results['rank_test_measure'] is # indeed the best_param attribute. best_index = np.argmin(rs.cv_results['rank_test_rmse']) assert rs.cv_results['params'][best_index] == rs.best_params['rmse'] best_index = np.argmin(rs.cv_results['rank_test_mae']) assert rs.cv_results['params'][best_index] == rs.best_params['mae']