def timecourse_figure(): # Get experimental data newdata_1 = IfnData("20190108_pSTAT1_IFN_Bcell") newdata_2 = IfnData("20190119_pSTAT1_IFN_Bcell") newdata_3 = IfnData("20190121_pSTAT1_IFN_Bcell") newdata_4 = IfnData("20190214_pSTAT1_IFN_Bcell") # Aligned data, to get scale factors for each data set alignment = DataAlignment() alignment.add_data([newdata_4, newdata_3, newdata_2, newdata_1]) alignment.align() alignment.get_scaled_data() mean_data = alignment.summarize_data() # Plot green = sns.color_palette("deep")[2] red = sns.color_palette("deep")[3] light_green = sns.color_palette("pastel")[2] light_red = sns.color_palette("pastel")[3] plot = TimecoursePlot((1, 1)) plot.add_trajectory(mean_data, 'errorbar', 'o--', (0, 0), label=r'10 pM IFN$\alpha$2', color=light_red, dose_species='Alpha', doseslice=10.0, alpha=0.5) plot.add_trajectory(mean_data, 'errorbar', 'o--', (0, 0), label=r'6 pM IFN$\beta$', color=light_green, dose_species='Beta', doseslice=6.0, alpha=0.5) plot.add_trajectory(mean_data, 'errorbar', 'o-', (0, 0), label=r'3000 pM IFN$\alpha$2', color=red, dose_species='Alpha', doseslice=3000.0) plot.add_trajectory(mean_data, 'errorbar', 'o-', (0, 0), label=r'2000 pM IFN$\beta$', color=green, dose_species='Beta', doseslice=2000.0) fname = os.path.join(os.getcwd(), 'results', 'Figures', 'Figure_4', 'Timecourse.pdf') plot.axes.set_ylabel('pSTAT1 (MFI)') plot.show_figure(show_flag=False, save_flag=True, save_dir=fname)
def _split_data(datalist, withhold): """Splits a list of IfnData instances into test and train subsets, placing <withold> percentage of the data in the test subset. The testing subset is then aligned using a DataAlignment instance, and the training subset is scaled according to the *testing* subset scale factors. The test and train aligned IfnData objects output by the DataAlignment.summarize_data() method are returned. """ assert 0 <= withhold <= 100 # Build mask which selects <withhold> points for test subset data_coord = _get_data_coordinates(datalist[0]) test_size = int((100-withhold) * len(data_coord) / 100.0) test_idcs = np.random.choice(len(data_coord), test_size, False) test_coord = [data_coord[i] for i in test_idcs] train_coord = [c for c in data_coord if c not in test_coord] # Separate data into test and train subsets test_datalist = [d.copy() for d in datalist] train_datalist = [d.copy() for d in datalist] for obj in test_datalist: for c in test_coord: obj.data_set.loc[c[0:2]][c[2]] = np.NaN for obj in train_datalist: for c in train_coord: obj.data_set.loc[c[0:2]][c[2]] = np.NaN train_alignment = DataAlignment() train_alignment.add_data(train_datalist) train_alignment.align() train_alignment.get_scaled_data() train = train_alignment.summarize_data() if withhold == 0: test = None else: test_alignment = DataAlignment() test_alignment.add_data(test_datalist) test_alignment.scale_factors = train_alignment.scale_factors test_alignment.get_scaled_data() test = test_alignment.summarize_data() return train, test
import pandas as pd from ifnclass.ifnfit import StepwiseFit if __name__ == '__main__': # ------------------------------ # Align all data # ------------------------------ newdata_1 = IfnData("20190108_pSTAT1_IFN_Bcell") newdata_2 = IfnData("20190119_pSTAT1_IFN_Bcell") newdata_3 = IfnData("20190121_pSTAT1_IFN_Bcell") newdata_4 = IfnData("20190214_pSTAT1_IFN_Bcell") alignment = DataAlignment() alignment.add_data([newdata_4, newdata_3, newdata_2, newdata_1]) alignment.align() alignment.get_scaled_data() mean_data = alignment.summarize_data() # ------------------------------- # Initialize model # ------------------------------- times = newdata_4.get_times('Alpha') doses_alpha = newdata_4.get_doses('Alpha') doses_beta = newdata_4.get_doses('Beta') Mixed_Model = IfnModel('Mixed_IFN_ppCompatible') Mixed_Model.set_parameters({ 'R2': 4920, 'R1': 1200, 'k_a1': 2.0e-13, 'k_a2': 1.328e-12, 'k_d3': 1.13e-4,
# F| alpha beta # | 1E-10 6E-12 # G| alpha beta # | 1E-11 2E-13 # H| alpha beta # | 0 pM 0 pM # Load saved DataAlignment small_alignment = DataAlignment() small_alignment.load_from_save_file( 'small_alignment', os.path.join(os.getcwd(), 'small_alignment')) large_alignment = DataAlignment() large_alignment.load_from_save_file( 'large_alignment', os.path.join(os.getcwd(), 'large_alignment')) small_alignment.align() small_alignment.get_scaled_data() mean_small_data = small_alignment.summarize_data() large_alignment.align() large_alignment.get_scaled_data() mean_large_data = large_alignment.summarize_data() # ---------------------- # Set up Figure layout # ---------------------- # Set up dose response figures new_fit = DoseresponsePlot((1, 2), figsize=(9, 1.5 * 2.5)) new_fit.axes[0].set_ylabel('pSTAT1 (MFI)') # new_fit.axes[1].set_ylabel('pSTAT1 (MFI)') # Plot Dose respsonse data times = [2.5, 5.0, 7.5, 10.0, 20.0, 60.0]
def score_params(params): # -------------------- # Set up Model # -------------------- Mixed_Model, DR_method = lm.load_model() scale_factor, DR_KWARGS = lm.SCALE_FACTOR, lm.DR_KWARGS Mixed_Model.set_parameters(params) # Make predictions times = [2.5, 5.0, 7.5, 10.0, 20.0, 60.0] alpha_doses = [10, 100, 300, 1000, 3000, 10000, 100000] beta_doses = [0.2, 6, 20, 60, 200, 600, 2000] dra60 = DR_method(times, 'TotalpSTAT', 'Ia', alpha_doses, parameters={'Ib': 0}, sf=scale_factor, **DR_KWARGS) drb60 = DR_method(times, 'TotalpSTAT', 'Ib', beta_doses, parameters={'Ia': 0}, sf=scale_factor, **DR_KWARGS) sim_df = IfnData('custom', df=pd.concat((dra60.data_set, drb60.data_set)), conditions={ 'Alpha': { 'Ib': 0 }, 'Beta': { 'Ia': 0 } }) # -------------------- # Set up Data # -------------------- newdata_1 = IfnData("20190108_pSTAT1_IFN_Bcell") newdata_2 = IfnData("20190119_pSTAT1_IFN_Bcell") newdata_3 = IfnData("20190121_pSTAT1_IFN_Bcell") newdata_4 = IfnData("20190214_pSTAT1_IFN_Bcell") # Aligned data, to get scale factors for each data set alignment = DataAlignment() alignment.add_data([newdata_4, newdata_3, newdata_2, newdata_1]) alignment.align() alignment.get_scaled_data() mean_data = alignment.summarize_data() # -------------------- # Score model # -------------------- sim_df.drop_sigmas() mean_data.drop_sigmas() # rmse = RMSE(mean_data.data_set.values, sim_df.data_set.values) mae = MAE(mean_data.data_set.values, sim_df.data_set.values) return mae