예제 #1
0
def test_concat_scheduler_state_dict():
    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)
    scheduler_1 = LinearCyclicalScheduler(optimizer, "lr", start_value=1.0, end_value=0.0, cycle_size=10)
    scheduler_2 = CosineAnnealingScheduler(optimizer, "lr", start_value=0.0, end_value=1.0, cycle_size=10)
    durations = [10]
    concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2], durations=durations, save_history=False)
    state_dict = concat_scheduler.state_dict()

    assert state_dict["durations"] == durations
    assert state_dict["_current_duration"] == durations[0]
    assert state_dict["_scheduler_index"] == 0

    for _ in range(20):
        concat_scheduler(None, None)

    concat_scheduler.load_state_dict(state_dict)
    assert concat_scheduler.durations == durations
    assert concat_scheduler._current_duration == durations[0]
    assert id(concat_scheduler._current_scheduler) == id(scheduler_1)

    with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"):
        concat_scheduler.load_state_dict({"a": 1})

    with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of concatenated schedulers"):
        concat_scheduler.load_state_dict({"schedulers": []})

    with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary, but given"):
        concat_scheduler.load_state_dict(None)
예제 #2
0
def test_concat_scheduler_3_schedulers():
    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer,
                                          "lr",
                                          start_value=1.0,
                                          end_value=0.5,
                                          cycle_size=20)
    scheduler_2 = LinearCyclicalScheduler(optimizer,
                                          "lr",
                                          start_value=0.5,
                                          end_value=0.45,
                                          cycle_size=10)
    scheduler_3 = LinearCyclicalScheduler(optimizer,
                                          "lr",
                                          start_value=0.5,
                                          end_value=0.0,
                                          cycle_size=20)
    durations = [10, 5]

    concat_scheduler = ConcatScheduler(
        schedulers=[scheduler_1, scheduler_2, scheduler_3],
        durations=durations,
        save_history=True,
    )
    state_dict = concat_scheduler.state_dict()

    data = [0] * 10
    max_epochs = 2
    simulated_values = ConcatScheduler.simulate_values(
        num_events=len(data) * max_epochs,
        schedulers=[scheduler_1, scheduler_2, scheduler_3],
        durations=durations,
    )

    def save_lr(engine):
        lrs.append(optimizer.param_groups[0]["lr"])

    trainer = Engine(lambda engine, batch: None)
    trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
    trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)

    for _ in range(2):
        lrs = []
        trainer.run(data, max_epochs=max_epochs)

        assert lrs == list(
            map(
                pytest.approx,
                [
                    # Cycle 1 of the first LinearCyclicalScheduler
                    1.0,
                    0.95,
                    0.9,
                    0.85,
                    0.8,
                    0.75,
                    0.7,
                    0.65,
                    0.6,
                    0.55,
                    # Cycle 1 of the second LinearCyclicalScheduler
                    0.5,
                    0.49,
                    0.48,
                    0.47,
                    0.46,
                    # Cycle 1 of the third LinearCyclicalScheduler
                    0.5,
                    0.45,
                    0.4,
                    0.35,
                    0.3,
                ],
            ))

        state_lrs = trainer.state.param_history["lr"]
        assert len(state_lrs) == len(lrs)
        # Unpack singleton lists
        assert [group[0] for group in state_lrs] == lrs

        assert lrs == pytest.approx([v for i, v in simulated_values])
        concat_scheduler.load_state_dict(state_dict)
예제 #3
0
def test_concat_scheduler_two_linear():
    tensor = torch.zeros([1], requires_grad=True)
    optimizer = torch.optim.SGD([tensor], lr=0)

    scheduler_1 = LinearCyclicalScheduler(optimizer,
                                          "lr",
                                          start_value=0.0,
                                          end_value=0.1,
                                          cycle_size=2)
    scheduler_2 = LinearCyclicalScheduler(optimizer,
                                          "lr",
                                          start_value=0.2,
                                          end_value=1.0,
                                          cycle_size=2)

    durations = [
        5,
    ]
    concat_scheduler = ConcatScheduler(schedulers=[scheduler_1, scheduler_2],
                                       durations=durations,
                                       save_history=True)
    state_dict = concat_scheduler.state_dict()

    assert concat_scheduler.get_param() == 0.0

    data = [0] * 10
    max_epochs = 2
    simulated_values = ConcatScheduler.simulate_values(
        num_events=len(data) * max_epochs,
        schedulers=[scheduler_1, scheduler_2],
        durations=durations,
    )

    def save_lr(engine):
        lrs.append(optimizer.param_groups[0]["lr"])

    trainer = Engine(lambda engine, batch: None)
    trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
    trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)

    for _ in range(2):
        lrs = []
        trainer.run(data, max_epochs=max_epochs)

        assert lrs == list(
            map(
                pytest.approx,
                [
                    # first LinearCyclicalScheduler
                    0.0,
                    0.1,
                    0.0,
                    0.1,
                    0.0,
                    # second LinearCyclicalScheduler
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                    1.0,
                    0.2,
                ],
            ))

        state_lrs = trainer.state.param_history["lr"]
        assert len(state_lrs) == len(lrs)
        # Unpack singleton lists
        assert [group[0] for group in state_lrs] == lrs

        assert lrs == pytest.approx([v for i, v in simulated_values])
        concat_scheduler.load_state_dict(state_dict)
예제 #4
0
    def _test(duration_vals_as_np_int):
        scheduler_1 = LinearCyclicalScheduler(optimizer,
                                              "lr",
                                              start_value=1.0,
                                              end_value=0.0,
                                              cycle_size=10)
        scheduler_2 = CosineAnnealingScheduler(optimizer,
                                               "lr",
                                               start_value=0.0,
                                               end_value=1.0,
                                               cycle_size=10)

        durations = [
            10,
        ]
        if duration_vals_as_np_int:
            durations = [np.int64(t) for t in durations]

        concat_scheduler = ConcatScheduler(
            schedulers=[scheduler_1, scheduler_2],
            durations=durations,
            save_history=True,
        )
        state_dict = concat_scheduler.state_dict()

        data = [0] * 10
        max_epochs = 2
        simulated_values = ConcatScheduler.simulate_values(
            num_events=len(data) * max_epochs,
            schedulers=[scheduler_1, scheduler_2],
            durations=durations,
        )

        def save_lr(engine):
            lrs.append(optimizer.param_groups[0]["lr"])

        trainer = Engine(lambda engine, batch: None)
        trainer.add_event_handler(Events.ITERATION_STARTED, concat_scheduler)
        trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr)

        for _ in range(2):
            lrs = []
            trainer.run(data, max_epochs=max_epochs)

            assert lrs == list(
                map(
                    pytest.approx,
                    [
                        # Cycle 1 of the LinearCyclicalScheduler
                        1.0,
                        0.8,
                        0.6,
                        0.4,
                        0.2,
                        0.0,
                        0.2,
                        0.4,
                        0.6,
                        0.8,
                        # Cycle 1 of the CosineAnnealingScheduler
                        0.0,
                        0.02447174185242318,
                        0.09549150281252627,
                        0.20610737385376332,
                        0.3454915028125263,
                        0.5,
                        0.6545084971874737,
                        0.7938926261462365,
                        0.9045084971874737,
                        0.9755282581475768,
                    ],
                ))

            state_lrs = trainer.state.param_history["lr"]
            assert len(state_lrs) == len(lrs)
            # Unpack singleton lists
            assert [group[0] for group in state_lrs] == lrs
            assert lrs == pytest.approx([v for i, v in simulated_values])
            concat_scheduler.load_state_dict(state_dict)