def test_no_torch_utils_tensorboard_package(dirname):
    from tensorboardX import SummaryWriter

    with patch.dict("sys.modules", {"torch.utils.tensorboard": None}):
        tb_logger = TensorboardLogger(log_dir=dirname)
        assert isinstance(tb_logger.writer, SummaryWriter), type(tb_logger.writer)
        tb_logger.close()
예제 #2
0
def add_tensorboard(engine_train, optimizer, model, log_dir):
    """Creates an ignite logger object and adds training elements such as weight and gradient histograms

    Args:
        engine_train (:obj:`ignite.engine`): the train engine to attach to the logger
        optimizer (:obj:`torch.optim`): the model's optimizer
        model (:obj:`torch.nn.Module`): the model being trained
        log_dir (string): path to where tensorboard data should be saved
    """
    # Create a logger
    tb_logger = TensorboardLogger(log_dir=log_dir)

    # Attach the logger to the trainer to log training loss at each iteration
    tb_logger.attach(engine_train,
                     log_handler=OutputHandler(
                         tag="training",
                         output_transform=lambda loss: {"loss": loss}),
                     event_name=Events.ITERATION_COMPLETED)

    # Attach the logger to the trainer to log optimizer's parameters, e.g. learning rate at each iteration
    tb_logger.attach(engine_train,
                     log_handler=OptimizerParamsHandler(optimizer),
                     event_name=Events.EPOCH_COMPLETED)

    # Attach the logger to the trainer to log model's weights as a histogram after each epoch
    tb_logger.attach(engine_train,
                     log_handler=WeightsHistHandler(model),
                     event_name=Events.EPOCH_COMPLETED)

    # Attach the logger to the trainer to log model's gradients as a histogram after each epoch
    tb_logger.attach(engine_train,
                     log_handler=GradsHistHandler(model),
                     event_name=Events.EPOCH_COMPLETED)

    tb_logger.close()
예제 #3
0
def setup_training_loggers(name, level=logging.INFO):
    log_setup = logging.getLogger(name)

    os.makedirs(os.path.join(cfg.tb_log_folder, name), exist_ok=True)
    tb_logger = TensorboardLogger(os.path.join(cfg.tb_log_folder, name))

    os.makedirs(os.path.join(cfg.checkpoint_log_folder, name), exist_ok=True)
    checkpoint_handler = ModelCheckpoint(os.path.join(
        cfg.checkpoint_log_folder, name),
                                         'checkpoint',
                                         save_interval=1,
                                         n_saved=3,
                                         require_empty=False)

    if len(log_setup.handlers) == 2:  # Logger already set up for current run
        return log_setup, tb_logger, checkpoint_handler

    fileHandler = logging.FileHandler(os.path.join(cfg.validation_log_folder,
                                                   name + '.log'),
                                      mode='a')
    formatter = logging.Formatter('%(levelname)s: %(asctime)s %(message)s',
                                  datefmt='%m/%d/%Y %I:%M:%S %p')
    fileHandler.setFormatter(formatter)

    consoleHandler = logging.StreamHandler()
    consoleHandler.setFormatter(formatter)

    log_setup.setLevel(level)
    log_setup.addHandler(fileHandler)
    log_setup.addHandler(consoleHandler)

    return logging.getLogger(name), tb_logger, checkpoint_handler
예제 #4
0
def get_tensorboard_logger(trainer: Engine, evaluators: ThreeEvaluators,
                           metric_names: List[str]) -> TensorboardLogger:
    """
    creates a ``tensorboard`` logger which read metrics from given evaluators and attaches it to a given trainer

    :param trainer: an ``ignite`` trainer to attach to
    :param evaluators: a triple of train, validation, and test evaluators to get metrics from
    :param metric_names: a list of metrics to log during validation and testing
    """
    tb_logger = TensorboardLogger(log_dir=f"runs/{datetime.now()}",
                                  flush_secs=1)
    training_loss = OutputHandler(
        "training",
        ["running_loss"],
        global_step_transform=global_step_from_engine(trainer),
    )
    tb_logger.attach(trainer, training_loss, Events.EPOCH_COMPLETED)
    validation_loss = OutputHandler(
        "validation",
        metric_names,
        global_step_transform=global_step_from_engine(trainer),
    )
    tb_logger.attach(evaluators.validation, validation_loss, Events.COMPLETED)
    test_loss = OutputHandler(
        "test",
        metric_names,
        global_step_transform=global_step_from_engine(trainer),
    )
    tb_logger.attach(evaluators.test, test_loss, Events.COMPLETED)
    return tb_logger
예제 #5
0
def add_logging_and_checkpoint_saving(trainer, evaluator, metrics, model, optimizer, args, prefix=""):
    """ Add to training engine tensorboard logging, progress bar with average loss, checkpoint saving and save training config. """
    # Add progress bar with average loss
    RunningAverage(output_transform=lambda x: x).attach(trainer, prefix + "loss")
    pbar = ProgressBar(persist=True)
    pbar.attach(trainer, metric_names=[prefix + "loss"])
    evaluator.add_event_handler(Events.COMPLETED,
                                lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))

    # Add tensorboard logging with training and evaluation metrics
    tb_logger = TensorboardLogger(log_dir=None)
    tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=[prefix + "loss"]),
                     event_name=Events.ITERATION_COMPLETED)
    tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer),
                     event_name=Events.ITERATION_STARTED)

    @evaluator.on(Events.COMPLETED)
    def tb_log_metrics(engine):
        for name in metrics.keys():
            tb_logger.writer.add_scalar(name, engine.state.metrics[name], trainer.state.iteration)

    # Add checkpoint saving after each epoch - take care of distributed encapsulation ('getattr()')
    checkpoint_handler = ModelCheckpoint(tb_logger.writer.log_dir, 'checkpoint', save_interval=1, n_saved=3)
    trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)})

    # Save training configuration
    torch.save(args, os.path.join(tb_logger.writer.log_dir, CONFIG_NAME))

    return checkpoint_handler, tb_logger
예제 #6
0
def test_integration_as_context_manager(dirname):

    n_epochs = 5
    data = list(range(50))

    losses = torch.rand(n_epochs * len(data))
    losses_iter = iter(losses)

    def update_fn(engine, batch):
        return next(losses_iter)

    with TensorboardLogger(log_dir=dirname) as tb_logger:

        trainer = Engine(update_fn)

        def dummy_handler(engine, logger, event_name):
            global_step = engine.state.get_event_attrib_value(event_name)
            logger.writer.add_scalar("test_value", global_step, global_step)

        tb_logger.attach(trainer,
                         log_handler=dummy_handler,
                         event_name=Events.EPOCH_COMPLETED)

        trainer.run(data, max_epochs=n_epochs)

    # Check if event files are present
    written_files = os.listdir(dirname)
    written_files = [f for f in written_files if "tfevents" in f]
    assert len(written_files) > 0
예제 #7
0
    def custom_setup(self):

        if self.tensorboard_logs:
            tb_logger = TensorboardLogger(log_dir=self.tensorboard_logs)
            tb_logger.attach(self.trainer,
                             log_handler=OutputHandler(
                                 tag="training",
                                 output_transform=lambda loss: {'loss': loss}),
                             event_name=Events.ITERATION_COMPLETED)
            tb_logger.attach(self.evaluator,
                             log_handler=OutputHandler(
                                 tag="validation",
                                 metric_names=["LossMetric"],
                                 another_engine=self.trainer),
                             event_name=Events.EPOCH_COMPLETED)

            if self.optional_tensorboard_features:
                tb_logger.attach(self.trainer,
                                 log_handler=OptimizerParamsHandler(
                                     self.optimizer),
                                 event_name=Events.ITERATION_STARTED)
                tb_logger.attach(self.trainer,
                                 log_handler=WeightsScalarHandler(self.model),
                                 event_name=Events.ITERATION_COMPLETED)
                tb_logger.attach(self.trainer,
                                 log_handler=WeightsHistHandler(self.model),
                                 event_name=Events.EPOCH_COMPLETED)
                tb_logger.attach(self.trainer,
                                 log_handler=GradsScalarHandler(self.model),
                                 event_name=Events.ITERATION_COMPLETED)

            # This is important to close the tensorboard file logger
            @self.trainer.on(Events.COMPLETED)
            def end_tensorboard(trainer):
                logger.info("Training completed")
                tb_logger.close()

        if self.embeddings_name:

            @self.trainer.on(Events.COMPLETED)
            def log_embeddings(trainer):
                if hasattr(self.model, self.embeddings_name) and hasattr(
                        self.dataset_splits, "vectorizer") and TENSORBOARD:
                    logger.info(
                        f"Logging embeddings ({self.embeddings_name}) to Tensorboard!"
                    )
                    embeddings = getattr(self.model,
                                         self.embeddings_name).weight.data
                    metadata = [
                        str(self.dataset_splits.vectorizer.data_vocab.
                            _id2token[token_index]).encode('utf-8')
                        for token_index in range(embeddings.shape[0])
                    ]
                    self.writer.add_embedding(
                        mat=embeddings,
                        metadata=metadata,
                        global_step=self.trainer.state.epoch)
예제 #8
0
def test_no_tensorboardX_nor_torch_utils_tensorboard():
    with patch.dict("sys.modules", {
            "tensorboardX": None,
            "torch.utils.tensorboard": None
    }):
        with pytest.raises(
                RuntimeError,
                match=
                r"This contrib module requires either tensorboardX or torch"):
            TensorboardLogger(log_dir=None)
def setup_ignite(engine: Engine,
                 params: SimpleNamespace,
                 exp_source,
                 run_name: str,
                 extra_metrics: Iterable[str] = ()):
    simplefilter("ignore", category=UserWarning)
    handler = EndOfEpisodeHandler(exp_source,
                                  bound_avg_reward=params.stop_reward)
    handler.attach(engine)
    EpisodeFPSHandler().attach(engine)

    @engine.on(EpisodeEvents.EPISODE_COMPLETED)
    def episode_completed(trainer: Engine):
        passed = trainer.state.metrics.get("time_passed", 0)
        print(
            "Episode {}: reward={:.0f}, steps={}, speed={:.1f} f/s, elapsed={}"
            .format(trainer.state.episode, trainer.state.episode_reward,
                    trainer.state.episode_steps,
                    trainer.state.metrics.get("avg_fps", 0),
                    timedelta(seconds=int(passed))))

    @engine.on(EpisodeEvents.BOUND_REWARD_REACHED)
    def game_solved(trainer: Engine):
        passed = trainer.state.metrics["time_passed"]
        print(
            f"Game solved in {timedelta(seconds=int(passed))} after {trainer.state.episode}"
            f" episodes and {trainer.state.iteration} iterations!")
        trainer.should_terminate = True

    now = datetime.now().isoformat(timespec="minutes").replace(":", "-")
    logdir = f"runs/{now}-{params.run_name}-{run_name}"
    tb = TensorboardLogger(log_dir=logdir)
    run_avg = RunningAverage(output_transform=lambda v: v["loss"])
    run_avg.attach(engine, "avg_loss")
    metrics = ["reward", "steps", "avg_reward"]
    handler = OutputHandler(tag="episodes", metric_names=metrics)
    event = EpisodeEvents.EPISODE_COMPLETED
    tb.attach(engine, log_handler=handler, event_name=event)

    # write to tensorboard every 100 iterations
    PeriodicEvents().attach(engine)
    metrics = ["avg_loss", "avg_fps"]
    metrics.extend(extra_metrics)
    handler = OutputHandler(tag="train",
                            metric_names=metrics,
                            output_transform=lambda a: a)
    event = PeriodEvents.ITERS_100_COMPLETED
    tb.attach(engine, log_handler=handler, event_name=event)
예제 #10
0
def train():
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    model = Bert_SQG()
    optimizer = AdamW(model.parameters(), lr=3e-5)

    ds = dataloader.BertSQG_DataClass()
    dl = DataLoader(ds, num_workers=4, batch_size=4)
    scheduler = PiecewiseLinear(optimizer, "lr",
                                [(0, 3e-5),
                                 (EPOCHS * len(ds) // BATCH_SIZE, 0.0)])
    metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-1))}

    def update(engine, batch):
        model.train()
        for i in range(0, len(batch) - 1):
            x = batch[i].to(device)
            y = batch[i + 1].to(device)
            y_prime = model(x)
            loss = criterion(y_prime[-1], y[-1]) / ITERATION_STEP
            loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        if engine.state.iteration % ITERATION_STEP == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item()

    trainer = Engine(update)
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    pbar = ProgressBar(persist=True)
    pbar.attach(trainer, metric_names=["loss"])
    tb_logger = TensorboardLogger(log_dir='./logs')
    tb_logger.attach(trainer,
                     log_handler=OutputHandler(tag="training",
                                               metric_names=["loss"]),
                     event_name=Events.ITERATION_COMPLETED)
    tb_logger.attach(trainer,
                     log_handler=OptimizerParamsHandler(optimizer),
                     event_name=Events.ITERATION_STARTED)

    checkpoint_handler = ModelCheckpoint('./checkpoint',
                                         '_checkpoint',
                                         save_interval=1,
                                         n_saved=3)
    trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler,
                              {'bert_sqg': getattr(model, 'module', model)})
    trainer.run(dl, max_epochs=EPOCHS)
    tb_loger.close()
예제 #11
0
    def add_tensorboard_logging(self, logging_dir=None):

        # Add TensorBoard logging
        if logging_dir is None:
            os.path.join(self.config.DIRS.WORKING_DIR, 'tb_logs')
        else:
            os.path.join(logging_dir, 'tb_logs')
        print('Tensorboard logging saving to:: {} ...'.format(logging_dir),
              end='')

        self.tb_logger = TensorboardLogger(log_dir=logging_dir)
        # Logging iteration loss
        self.tb_logger.attach_output_handler(
            engine=self.train_engine,
            event_name=Events.ITERATION_COMPLETED,
            tag='training',
            output_transform=lambda loss: {"batch loss": loss})
        # Logging epoch training metrics
        self.tb_logger.attach_output_handler(
            engine=self.train_evaluator,
            event_name=Events.EPOCH_COMPLETED,
            tag="training",
            metric_names=[
                "loss", "accuracy", "precision", "recall", "f1", "topKCatAcc"
            ],
            global_step_transform=global_step_from_engine(self.train_engine),
        )
        # Logging epoch validation metrics
        self.tb_logger.attach_output_handler(
            engine=self.evaluator,
            event_name=Events.EPOCH_COMPLETED,
            tag="validation",
            metric_names=[
                "loss", "accuracy", "precision", "recall", "f1", "topKCatAcc"
            ],
            global_step_transform=global_step_from_engine(self.train_engine),
        )
        # Attach the logger to the trainer to log model's weights as a histogram after each epoch
        self.tb_logger.attach(self.train_engine,
                              event_name=Events.EPOCH_COMPLETED,
                              log_handler=WeightsHistHandler(self.model))
        # Attach the logger to the trainer to log model's gradients as a histogram after each epoch
        self.tb_logger.attach(self.train_engine,
                              event_name=Events.EPOCH_COMPLETED,
                              log_handler=GradsHistHandler(self.model))
        print('Tensorboard Logging...', end='')
        print('done')
	def __init__(self, name, model, log_dir, lr, lr_decay_step, adam=False):
		"""
		Initialize to train the given model.
		:param name: The name of the model to be trained.
		:param model: The model to be trained.
		:param log_dir: String. The log directory of the tensorboard.
		:param lr: Float. The learning rate.
		:param lr_decay_step: Integer. The amount of steps the learning rate decays.
		:param adam: Bool. Whether to use adam optimizer or not.
		"""
		super(Trainer, self).__init__(self.update_model)
		self.model = model
		# tqdm
		ProgressBar(persist=True).attach(self)
		# Optimizer
		params = [p for p in model.parameters() if p.requires_grad]
		if adam:
			self.optimizer = torch.optim.Adam(params, lr=lr)
		else:
			self.optimizer = torch.optim.SGD(params, lr=lr, momentum=0.9)
		# Scheduler
		if lr_decay_step > 0:
			self.scheduler = torch.optim.lr_scheduler.StepLR(self.optimizer, step_size=lr_decay_step, gamma=0.1)
			self.add_event_handler(Events.EPOCH_COMPLETED, lambda e: e.scheduler.step())
		else:
			self.scheduler = None
		# Terminate if nan values found
		self.add_event_handler(Events.ITERATION_COMPLETED, TerminateOnNan())
		# Tensorboard logging
		self.tb_logger = TensorboardLogger(log_dir=os.path.join(log_dir, name))
		self.add_event_handler(Events.COMPLETED, lambda x: self.tb_logger.close())
		self.tb_logger.attach(self,
		                      log_handler=OptimizerParamsHandler(self.optimizer),
		                      event_name=Events.EPOCH_COMPLETED)
		self.tb_logger.attach(self,
		                      log_handler=OutputHandler(tag='training', output_transform=lambda x: {
			                      'rpn_box_loss': round(self.state.output['loss_rpn_box_reg'].item(), 4),
			                      'rpn_cls_loss': round(self.state.output['loss_objectness'].item(), 4),
			                      'roi_box_loss': round(self.state.output['loss_box_reg'].item(), 4),
			                      'roi_cls_loss': round(self.state.output['loss_classifier'].item(), 4)
		                      }),
		                      event_name=Events.EPOCH_COMPLETED)
		# Run on GPU (cuda) if available
		if torch.cuda.is_available():
			torch.cuda.set_device(int(get_free_gpu()))
			model.cuda(torch.cuda.current_device())
예제 #13
0
def evaluate(config):
    device = torch.device('cuda' if config['use_cuda'] else 'cpu')

    model = architecture.Model().to(device)

    train_state = dict(model=model)

    print('Loading model checkpoint')
    workflow.ignite.handlers.ModelCheckpoint.load(
        train_state, 'model/checkpoints', device
    )


    @workflow.ignite.decorators.evaluate(model)
    def evaluate_batch(engine, examples):
        predictions = model.predictions(
            architecture.FeatureBatch.from_examples(examples)
        )
        loss = predictions.loss(examples)
        return dict(
            examples=examples,
            predictions=predictions.cpu().detach(),
            loss=loss,
        )

    evaluate_data_loaders = {
        f'evaluate_{name}': datastream.data_loader(
            batch_size=config['eval_batch_size'],
            num_workers=config['n_workers'],
            collate_fn=tuple,
        )
        for name, datastream in datastream.evaluate_datastreams().items()
    }

    tensorboard_logger = TensorboardLogger(log_dir='tb')

    for desciption, data_loader in evaluate_data_loaders.items():
        engine = evaluator(
            evaluate_batch, desciption,
            metrics.evaluate_metrics(),
            tensorboard_logger,
        )
        engine.run(data=data_loader)
    def logging_board(model_name="densenet121"):
        from ignite.contrib.handlers.tensorboard_logger import (
            TensorboardLogger,
            OutputHandler,
            OptimizerParamsHandler,
            GradsHistHandler,
        )

        tb_logger = TensorboardLogger("board/" + model_name)
        tb_logger.attach(
            trainer,
            log_handler=OutputHandler(
                tag="training", output_transform=lambda loss: {"loss": loss}),
            event_name=Events.ITERATION_COMPLETED,
        )

        tb_logger.attach(
            val_evaluator,
            log_handler=OutputHandler(
                tag="validation",
                metric_names=["accuracy", "loss"],
                another_engine=trainer,
            ),
            event_name=Events.EPOCH_COMPLETED,
        )

        tb_logger.attach(
            trainer,
            log_handler=OptimizerParamsHandler(IGTrainer.optimizer),
            event_name=Events.ITERATION_STARTED,
        )

        tb_logger.attach(
            trainer,
            log_handler=GradsHistHandler(IGTrainer.model),
            event_name=Events.EPOCH_COMPLETED,
        )
        tb_logger.close()
예제 #15
0
    def setup(self, training_metrics):
        def metric_name(n) -> str:
            if n.endswith('Accuracy'):
                n = 'acc'
            else:
                n = n[:-6] if n.endswith('Metric') else n
            return n

        def print_metrics(metrics) -> str:
            rv = ''
            metric_keys = sorted(k for k in metrics)
            for k in metric_keys:
                if k == 'Accuracy':
                    rv += f'{metric_name(k)}: {metrics[k]:.3}'
                else:
                    rv += f'{metric_name(k)}: {metrics[k]:.6}'
            return rv

        if self.seed:
            set_seed_everywhere(self.seed, self.cuda)

        pbar = ProgressBar()

        names = []
        for k, v in training_metrics.items():
            name = f'r{k}'
            names.append(name)
            RunningAverage(v).attach(self.trainer, name)
        RunningAverage(None,
                       output_transform=lambda x: x[-1] * self.
                       loss_accumulation_steps).attach(self.trainer, 'rloss')
        names.append('rloss')
        pbar.attach(self.trainer, names)

        pbar = ProgressBar()
        pbar.attach(self.evaluator)

        # A few events handler. To add / modify the events handler, you need to extend the __init__ method of RunnerABC
        # Ignite provides the necessary abstractions and a furnished repository of useful tools

        @self.trainer.on(Events.EPOCH_COMPLETED)
        def log_validation_results(trainer):
            self.evaluator.run(self.dataset_splits.val_data_loader())
            metrics = self.evaluator.state.metrics
            logger.info(
                f"Validation Results - Epoch: {trainer.state.epoch} {print_metrics(metrics)}"
            )

            if self.scheduler:
                self.scheduler.step(
                    metrics[self.loss_metric.__class__.__name__])

        @self.trainer.on(Events.COMPLETED)
        def log_test_results(trainer):
            self.evaluator.run(self.dataset_splits.test_data_loader())
            metrics = self.evaluator.state.metrics
            logger.info(
                f"Test Results - Epoch: {trainer.state.epoch} {print_metrics(metrics)}"
            )

        if self.tensorboard_logs:
            tb_logger = TensorboardLogger(log_dir=self.tensorboard_logs)
            tb_logger.attach(self.trainer,
                             log_handler=OutputHandler(
                                 tag="training",
                                 output_transform=lambda loss: {'loss': loss}),
                             event_name=Events.ITERATION_COMPLETED)
            tb_logger.attach(self.evaluator,
                             log_handler=OutputHandler(
                                 tag="validation",
                                 metric_names=["LossMetric"],
                                 another_engine=self.trainer),
                             event_name=Events.EPOCH_COMPLETED)
            tb_logger.attach(self.trainer,
                             log_handler=OptimizerParamsHandler(
                                 self.optimizer),
                             event_name=Events.ITERATION_STARTED)
            tb_logger.attach(self.trainer,
                             log_handler=WeightsScalarHandler(self.model),
                             event_name=Events.ITERATION_COMPLETED)
            tb_logger.attach(self.trainer,
                             log_handler=WeightsHistHandler(self.model),
                             event_name=Events.EPOCH_COMPLETED)
            tb_logger.attach(self.trainer,
                             log_handler=GradsScalarHandler(self.model),
                             event_name=Events.ITERATION_COMPLETED)

            # This is important to close the tensorboard file logger
            @self.trainer.on(Events.COMPLETED)
            def end_tensorboard(trainer):
                logger.info("Training completed")
                tb_logger.close()

        if self.embeddings_name:

            @self.trainer.on(Events.COMPLETED)
            def log_embeddings(trainer):
                if hasattr(self.model, self.embeddings_name) and hasattr(
                        self.dataset_splits, "vectorizer"):
                    logger.info(
                        f"Logging embeddings ({self.embeddings_name}) to Tensorboard!"
                    )
                    embeddings = getattr(self.model,
                                         self.embeddings_name).weight.data
                    metadata = [
                        str(self.dataset_splits.vectorizer.data_vocab.
                            _id2token[token_index]).encode('utf-8')
                        for token_index in range(embeddings.shape[0])
                    ]
                    self.writer.add_embedding(
                        mat=embeddings,
                        metadata=metadata,
                        global_step=self.trainer.state.epoch)
 def _create_tb_logger(self) -> TensorboardLogger:
     now = datetime.now().isoformat(timespec='minutes')
     now = now.replace(":", "")
     logdir = f"{self.logfolder}/{now}-{self.run_name}"
     return TensorboardLogger(log_dir=logdir)
예제 #17
0
    # Prepare metrics - note how we compute distributed metrics
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(), output_transform=lambda x: (x[0][0], x[1][0]))}
    metrics.update({"average_nll": MetricsLambda(average_distributed_scalar, metrics["nll"], args)})
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train
    if args.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer, metric_names=["loss"])
        evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))

        log_dir = make_logdir(args,args.model_checkpoint)
        tb_logger = TensorboardLogger(log_dir)

        tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]), event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)
        tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint(log_dir, 'checkpoint', save_interval=1, n_saved=3)
        trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)})  # "getattr" takes care of distributed encapsulation

        torch.save(args, log_dir + '/model_training_args.bin')
        getattr(model, 'module', model).config.to_json_file(os.path.join(log_dir, CONFIG_NAME))
        tokenizer.save_pretrained(log_dir)

    # Run the training
    trainer.run(train_loader, max_epochs=args.n_epochs)
def train(): 
    parser = ArgumentParser()
    parser.add_argument("--train_path", type=str, default='data/spolin-train-acl.json', help="Set data path")    
    parser.add_argument("--valid_path", type=str, default='data/spolin-valid.json', help="Set data path")     

    parser.add_argument("--correct_bias", type=bool, default=False, help="Set to true to correct bias for Adam optimizer")
    parser.add_argument("--lr", type=float, default=2e-5, help="Set learning rate")
    parser.add_argument("--n_epochs", type=int, default=4, help="Set number of epochs")
    parser.add_argument("--num_warmup_steps", type=float, default=1000, help="Set number of warm-up steps")
    parser.add_argument("--num_total_steps", type=float, default=10000, help="Set number of total steps")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)")
    parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Set maximum gradient normalization.")
    parser.add_argument("--pretrained_path", type=str, default='bert-base-uncased', help="Choose which pretrained model to use (bert-base-uncased, roberta-base, roberta-large, roberta-large-mnli)")    
    parser.add_argument("--batch_size", type=int, default=32, help="Provide the batch size")    
    parser.add_argument("--random_seed", type=int, default=42, help="Set the random seed")
    parser.add_argument("--test", action='store_true', help="If true, run with small dataset for testing code")
    parser.add_argument("--base", action='store_true', help="If true, run with base experiment configuration (training with spont only) for comparison")

    args = parser.parse_args() 

    logging.basicConfig(level=logging.INFO)
    logger.info("Arguments: {}".format(pformat(args)))

    if 'roberta' in args.pretrained_path: 
        # initialize tokenizer and model 
        logger.info("Initialize model and tokenizer.")
        tokenizer = RobertaTokenizer.from_pretrained(args.pretrained_path, cache_dir = '../pretrained_models')
        model = RobertaForSequenceClassification.from_pretrained(args.pretrained_path, cache_dir='../pretrained_models')

        ### START MODEL MODIFICATION
        # Pretrained model was not trained with token type ids. 
        # fix token type embeddings for finetuning. Without this, the model can only take 0s as valid input for token_type_ids 
        model.config.type_vocab_size = 2 
        model.roberta.embeddings.token_type_embeddings = torch.nn.Embedding(2, model.config.hidden_size)
        model.roberta.embeddings.token_type_embeddings.weight.data.normal_(mean=0.0, std=model.config.initializer_range)

        ### END MOD
    elif 'bert' in args.pretrained_path: 
        model = BertForSequenceClassification.from_pretrained(args.pretrained_path, cache_dir='../pretrained_models')
        tokenizer = BertTokenizer.from_pretrained(args.pretrained_path, cache_dir='../pretrained_models')

    model.to(args.device)

    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']

    optimizer_grouped_parameters = [
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01}, 
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
    ]

    optimizer = AdamW(optimizer_grouped_parameters,
                        lr=args.lr,
                        correct_bias = args.correct_bias)
    scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.num_warmup_steps, t_total=args.num_total_steps) 

    logger.info("Prepare datasets")
    logger.info("Loading train set...")

    train_data = get_data(args.train_path)
    valid_data = get_data(args.valid_path)

    cornell_valid_data = {k: {'cornell': valid_data[k]['cornell']} for k in valid_data.keys()}
    spont_valid_data = {k: {'spont': valid_data[k]['spont']} for k in valid_data.keys()}

    train_loader, train_sampler = get_data_loaders(args, train_data, args.train_path, tokenizer)
    logger.info("Loading validation set...")
    valid_p = Path(args.valid_path)
    cornell_valid_loader, cornell_valid_sampler = get_data_loaders(args, cornell_valid_data, f"{str(valid_p.parent)}/cornell_{valid_p.name}",  tokenizer)
    spont_valid_loader, spont_valid_sampler = get_data_loaders(args, spont_valid_data, f"{str(valid_p.parent)}/spont_{valid_p.name}", tokenizer)


    # Training function and trainer 
    def update(engine, batch): 
        model.train() 

        batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
        b_input_ids, b_input_mask, b_input_segment, b_labels = batch

        optimizer.zero_grad()
        #roberta has issues with token_type_ids 
        loss, logits = model(b_input_ids, token_type_ids=b_input_segment, attention_mask=b_input_mask, labels=b_labels)
        # loss, logits = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask, labels=b_labels)


        loss.backward() 
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
        
        optimizer.step() 
        scheduler.step() 

        return loss.item(), logits, b_labels

    trainer = Engine(update)     

    # Evaluation function and evaluator 
    def inference(engine, batch): 
        model.eval() 

        batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
        b_input_ids, b_input_mask, b_input_segment, b_labels = batch
        
        with torch.no_grad(): 
            #roberta has issues with token_type_ids 
            # loss, logits = model(b_input_ids, token_type_ids = None, attention_mask=b_input_mask, labels=b_labels)
            loss, logits = model(b_input_ids, token_type_ids = b_input_segment, attention_mask=b_input_mask, labels=b_labels)
            label_ids = b_labels

        return logits, label_ids, loss.item()
    cornell_evaluator = Engine(inference)
    spont_evaluator = Engine(inference)


    trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: cornell_evaluator.run(cornell_valid_loader))
    trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: spont_evaluator.run(spont_valid_loader))


    RunningAverage(output_transform=lambda x: x[0]).attach(trainer, "loss") 
    RunningAverage(Accuracy(output_transform=lambda x: (x[1], x[2]))).attach(trainer, "accuracy")
    if torch.cuda.is_available(): 
        GpuInfo().attach(trainer, name='gpu')

    recall = Recall(output_transform=lambda x: (x[0], x[1]))
    precision = Precision(output_transform=lambda x: (x[0], x[1]))
    F1 = (precision * recall * 2 / (precision + recall)).mean()
    accuracy = Accuracy(output_transform=lambda x: (x[0], x[1]))
    metrics = {"recall": recall, "precision": precision, "f1": F1, "accuracy": accuracy, "loss": Average(output_transform=lambda x: x[2])}

    for name, metric in metrics.items(): 
        metric.attach(cornell_evaluator, name) 
        metric.attach(spont_evaluator, name) 


    pbar = ProgressBar(persist=True)
    pbar.attach(trainer, metric_names=['loss', 'accuracy'])
    pbar.attach(trainer, metric_names=['gpu:0 mem(%)', 'gpu:0 util(%)'])
    
    cornell_evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Cornell validation metrics:\n %s" % pformat(cornell_evaluator.state.metrics)))
    spont_evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Spont validation metrics:\n %s" % pformat(spont_evaluator.state.metrics)))


    tb_logger = TensorboardLogger(log_dir=None)
    tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]), event_name=Events.ITERATION_COMPLETED)
    tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)
    tb_logger.attach(cornell_evaluator, log_handler=OutputHandler(tag="valid", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED)
    tb_logger.attach(spont_evaluator, log_handler=OutputHandler(tag="valid", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED)


    # tb_logger.writer.log_dir -> tb_logger.writer.logdir (this is the correct attribute name as seen in: https://tensorboardx.readthedocs.io/en/latest/_modules/tensorboardX/writer.html#SummaryWriter)
    checkpoint_handler = ModelCheckpoint(tb_logger.writer.logdir, 'checkpoint', save_interval=1, n_saved=5)
    trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)})  # "getattr" take care of distributed encapsulation

    torch.save(args, tb_logger.writer.logdir + '/model_training_args.bin')
    getattr(model, 'module', model).config.to_json_file(os.path.join(tb_logger.writer.logdir, CONFIG_NAME))
    tokenizer.save_vocabulary(tb_logger.writer.logdir)

    trainer.run(train_loader, max_epochs = args.n_epochs)

    if args.n_epochs > 0: 
        os.rename(checkpoint_handler._saved[-1][1][-1], os.path.join(tb_logger.writer.logdir, WEIGHTS_NAME))  # TODO: PR in ignite to have better access to saved file paths (cleaner)
        tb_logger.close()
예제 #19
0
def main():
    args = get_args()
    if 'e-SNLI-VE' in args.data_path:
        args.no_image = False
    else:
        args.no_image = True
    if not args.no_image:
        args.no_premise = True
    args.with_expl = True

    '''Setup'''
    t = datetime.today()
    output_dir = os.path.join(args.output_folder,
                              f"{t.month}_{t.day}_{t.hour}_{t.minute}_{t.second}")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir, exist_ok=True)

    # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log main process only, logger.warning => log all processes
    logging.basicConfig(filename=os.path.join(output_dir, 'app.log'),
                        filemode='a',
                        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    # This is a logger.warning: it will be printed by all distributed processes
    logger.warning(f"Running process {args.local_rank}")
    logger.info(f"Arguments: {pformat(args)}")
    logger.info(f'Image not used:{args.no_image}')
    logger.info(f'Premise not used:{args.no_premise}')
    logger.info(f'Explanations used:{args.with_expl}')

    '''Initialize distributed training if needed'''
    args.distributed = (args.local_rank != -1)
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')

    logger.info(
        "Prepare tokenizer, pretrained model and optimizer - add special tokens for fine-tuning")
    tokenizer = GPT2Tokenizer.from_pretrained(args.model_checkpoint)
    tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT)
    if args.no_image:
        model = GPT2LMHeadModel.from_pretrained(args.model_checkpoint)
    else:
        import image_gpt2_291
        model = image_gpt2_291.GPT2LMHeadModel.from_pretrained(
            args.model_checkpoint)
    model.resize_token_embeddings(len(tokenizer))
    model.to(args.device)
    optimizer = AdamW(model.parameters(), lr=args.lr)

    '''
    Prepare model for FP16 and distributed training if needed (order is important, distributed should be the last)
    '''
    if args.fp16:
        from apex import amp  # Apex is only required if we use fp16 training
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16)
    if args.distributed:
        model = DistributedDataParallel(model,
                                        device_ids=[args.local_rank],
                                        output_device=args.local_rank)
        model = model.module

    logger.info("Prepare datasets")
    train_loader, val_loader = get_data_loaders(args, tokenizer)

    '''Training function and trainer'''
    def train(engine, batch):
        model.train()
        batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
        if args.no_image:
            input_ids, lm_label, label, input_mask = batch
        else:
            image, input_ids, lm_label, label, input_mask = batch

        if args.no_image:
            output = model(input_ids=input_ids,
                           #    attention_mask=input_mask,
                           labels=lm_label)
        else:
            output = model(input_ids=input_ids,
                           images=image,
                           #    attention_mask=input_mask,
                           labels=lm_label)
        loss, logits, _ = output

        loss = loss / args.gradient_accumulation_steps
        if args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            torch.nn.utils.clip_grad_norm_(
                amp.master_params(optimizer), args.max_norm)
        else:
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
        if engine.state.iteration % args.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
        if not args.with_expl:
            lbl_accuracy = torch.eq(label, logits.argmax(
                dim=1)).float().sum() / len(label)
            return {
                'loss': loss.item(),
                'lbl_accuracy': lbl_accuracy.item()
            }
        else:
            if engine.state.iteration % (args.gradient_accumulation_steps * 500) == 0:
                input_output = list(zip(input_ids, logits))
                random_item = random.choice(input_output)
                in_sent = tokenizer.decode(list(filter(
                    lambda x: x != tokenizer.eos_token_id,
                    random_item[0])))
                out_expl = tokenizer.decode(random_item[1].argmax(dim=1),
                                            skip_special_tokens=True)
                logger.info(f'MODEL INPUT: {in_sent}')
                logger.info(f'GEN. EXPL {out_expl}')
                logger.info('--------------------------------')
            return {
                'loss': loss.item(),
            }

    '''Validation function and validator (validator output is the input of the metrics)'''
    def validation(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = tuple(input_tensor.to(args.device)
                          for input_tensor in batch)
            if args.no_image:
                input_ids, lm_label, label, input_mask = batch
            else:
                image, input_ids, lm_label, label, input_mask = batch

            if args.no_image:
                output = model(input_ids=input_ids,
                               #    attention_mask=input_mask
                               )
            else:
                output = model(input_ids=input_ids,
                               images=image,
                               #    attention_mask=input_mask
                               )
            logits, _ = output

            logits_shifted = logits[..., :-1, :].contiguous().view(-1,
                                                                   logits.size(-1))
            labels_shifted = lm_label[..., 1:].contiguous().view(-1)
            return logits_shifted, labels_shifted

    '''Engines'''
    trainer = Engine(train)
    validator = Engine(validation)

    # t_total = len(
    #     train_loader) // args.gradient_accumulation_steps * args.n_epochs
    # scheduler = get_linear_schedule_with_warmup(
    #     optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total)
    '''Linearly decrease the learning rate from lr to zero'''
    scheduler = PiecewiseLinear(optimizer, "lr",
                                [(0, args.lr), (args.n_epochs * len(train_loader), 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    '''
    Attach validation to trainer: we evaluate when we start the training and at the end of each epoch
    '''
    trainer.add_event_handler(Events.EPOCH_COMPLETED,
                              lambda _: validator.run(val_loader))
    if args.eval_before_start:
        trainer.add_event_handler(Events.STARTED,
                                  lambda _: validator.run(val_loader))

    '''Prepare metrics - note how we compute distributed metrics'''
    RunningAverage(output_transform=lambda x: x['loss']).attach(
        trainer, "loss")
    RunningAverage(output_transform=lambda x: math.exp(
        average_distributed_scalar(x['loss'], args))).attach(trainer, "ppl")
    if not args.with_expl:
        RunningAverage(output_transform=lambda x: 100 * x['lbl_accuracy']).attach(
            trainer, "lbl_accuracy")

    metrics = {}
    metrics["lbl_loss"] = Loss(torch.nn.CrossEntropyLoss(),
                               output_transform=lambda x: (x[0], x[1]))
    metrics["loss"] = MetricsLambda(
        lambda l, a: average_distributed_scalar(
            l / a.gradient_accumulation_steps, a), metrics["lbl_loss"], args)
    metrics["ppl"] = MetricsLambda(math.exp, metrics["loss"])
    if not args.with_expl:
        metrics["lbl_accuracy"] = 100 * \
            Accuracy(output_transform=lambda x: (x[0], x[1]))
    for name, metric in metrics.items():
        metric.attach(validator, name)

    '''
    On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train
    '''
    if args.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer,
                    metric_names=["loss", 'ppl'] if args.with_expl else ["loss", 'lbl_accuracy', 'ppl'])
        validator.add_event_handler(Events.COMPLETED,
                                    lambda _: pbar.log_message(
                                        "Validation: %s" % pformat(validator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir=output_dir)
        tb_logger.attach(trainer,
                         log_handler=OptimizerParamsHandler(optimizer),
                         event_name=Events.ITERATION_STARTED)
        tb_logger.attach(trainer,
                         log_handler=OutputHandler(
                             tag="training",
                             metric_names=["loss"]),
                         event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer,
                         log_handler=OutputHandler(
                             tag="training",
                             metric_names=["ppl"] if args.with_expl else ["lbl_accuracy", "ppl"]),
                         event_name=Events.EPOCH_COMPLETED)

        tb_logger.attach(validator,
                         log_handler=OutputHandler(
                             tag="validation",
                             metric_names=[
                                 'ppl', 'loss'] if args.with_expl else['ppl', 'loss', 'lbl_accuracy'],
                             global_step_transform=lambda *args, **kwargs: trainer.state.iteration),
                         event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint(output_dir,
                                             'checkpoint',
                                             n_saved=8,
                                             require_empty=False)
        trainer.add_event_handler(Events.EPOCH_COMPLETED(every=1),
                                  checkpoint_handler,
                                  {'mymodel': getattr(model, 'module', model)})

        # "getattr" take care of distributed encapsulation
        torch.save(args, os.path.join(output_dir, 'model_training_args.bin'))
        getattr(model, 'module', model).config.to_json_file(
            os.path.join(output_dir, CONFIG_NAME))
        tokenizer.save_vocabulary(output_dir)

    '''Run the training'''
    trainer.run(train_loader, max_epochs=args.n_epochs)
예제 #20
0
def train(args):
    logger.info("Prepare tokenizer, pretrained model and optimizer.")
    tokenizer, _, vocab = get_kogpt2_tokenizer()
    model = get_kogpt2_model()
    model.to(args.device)
    optimizer = AdamW(model.parameters(), lr=args.lr, correct_bias=True)

    logger.info("Prepare datasets")
    train_loader, val_loader = get_data_loaders(args, tokenizer, vocab)

    def update(engine, batch):
        model.train()

        batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
        input_ids, labels, token_type_ids = batch

        loss, *_ = model(input_ids,
                         token_type_ids=token_type_ids,
                         labels=labels)
        loss = loss / args.gradient_accumulation_steps

        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)

        if engine.state.iteration % args.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()

        return loss.item()

    trainer = Engine(update)

    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = tuple(
                input_tensor.to(args.device) for input_tensor in batch)
            input_ids, labels, token_type_ids = batch
            # logger.info(tokenizer.decode(input_ids[0, -1, :].tolist()))
            # if we dont send labels to model, it doesnt return losses
            logits, *_ = model(input_ids, token_type_ids=token_type_ids)
            logits_flat_shifted = logits[..., :-1, :].contiguous().view(
                -1, logits.size(-1))
            labels_flat_shifted = labels[..., 1:].contiguous().view(-1)
            return (logits_flat_shifted), (labels_flat_shifted)

    evaluator = Engine(inference)

    # Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch
    trainer.add_event_handler(Events.EPOCH_COMPLETED,
                              lambda _: evaluator.run(val_loader))
    if args.n_epochs < 1:
        trainer.add_event_handler(Events.COMPLETED,
                                  lambda _: evaluator.run(val_loader))
    if args.eval_before_start:
        trainer.add_event_handler(Events.STARTED,
                                  lambda _: evaluator.run(val_loader))

    # Linearly decrease the learning rate from lr to zero
    scheduler = PiecewiseLinear(optimizer, "lr",
                                [(0, args.lr),
                                 (args.n_epochs * len(train_loader), 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # Prepare metrics - note how we compute distributed metrics
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    metrics = {
        "nll":
        Loss(torch.nn.CrossEntropyLoss(ignore_index=-100),
             output_transform=lambda x: (x[0], x[1])),
        "accuracy":
        Accuracy(output_transform=lambda x: (x[0], x[1]))
    }
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints and save model,
    # configuration and tokenizer before we start to train
    pbar = ProgressBar(persist=True)
    pbar.attach(trainer, metric_names=["loss"])
    evaluator.add_event_handler(
        Events.COMPLETED, lambda _: pbar.log_message(
            "Validation: %s" % pformat(evaluator.state.metrics)))

    log_dir = make_logdir("kogpt2_personachat")
    tb_logger = TensorboardLogger(log_dir)

    tb_logger.attach(trainer,
                     log_handler=OutputHandler(tag="training",
                                               metric_names=["loss"]),
                     event_name=Events.ITERATION_COMPLETED)
    tb_logger.attach(trainer,
                     log_handler=OptimizerParamsHandler(optimizer),
                     event_name=Events.ITERATION_STARTED)
    tb_logger.attach(
        evaluator,
        log_handler=OutputHandler(
            tag="validation",
            metric_names=list(metrics.keys()),
            global_step_transform=global_step_from_engine(trainer)),
        event_name=Events.EPOCH_COMPLETED)

    checkpoint_handler = ModelCheckpoint(log_dir,
                                         'checkpoint',
                                         save_interval=1,
                                         n_saved=3)
    trainer.add_event_handler(
        Events.EPOCH_COMPLETED, checkpoint_handler,
        {'mymodel': getattr(model, 'module', model)
         })  # "getattr" takes care of distributed encapsulation

    torch.save(args, log_dir + '/model_training_args.bin')
    getattr(model, 'module',
            model).config.to_json_file(os.path.join(log_dir, CONFIG_NAME))
    # tokenizer.save_pretrained(log_dir)

    # Run the training
    trainer.run(train_loader, max_epochs=args.n_epochs)

    # On the main process: close tensorboard logger and rename the last checkpoint (for easy re-loading with OpenAIGPTModel.from_pretrained method)
    # TODO: PR in ignite to have better access to saved file paths (cleaner)
    os.rename(os.path.join(log_dir, checkpoint_handler._saved[-1][1]),
              os.path.join(log_dir, WEIGHTS_NAME))
    tb_logger.close()
예제 #21
0
def train():
    os.environ['CUDA_VISIBLE_DEVICES'] = '7'

    parser = ArgumentParser()
    parser.add_argument('--gpt2', action='store_true', help="use gpt2")
    parser.add_argument("--model_checkpoint", type=str, default="uer/gpt2-chinese-cluecorpussmall", help="Path or URL of the model")
    parser.add_argument("--from_step", type=int, default=-1, help="Init learning rate from this step")
    parser.add_argument('--pretrained', action='store_true', help="If False train from scratch")
    parser.add_argument("--data_path", type=str, default="data/autocloze.json",
                        help="Path or url of the dataset. ")
    parser.add_argument("--train_path", type=str, default="data/toy_train.txt",
                        help="Path of the train dataset for dist dataset. ")
    parser.add_argument("--valid_path", type=str, default="data/toy_valid.txt",
                        help="Path of the valid dataset for dist dataset. ")
    #--------------------------------------------------------------
    parser.add_argument("--dataset_cache", type=str, default="dataset_zh",
                        help="Path or url of the dataset cache")
    parser.add_argument('--log_file', '-log_file', type=str, default="", help="Output logs to a file under this path")
    parser.add_argument("--num_workers", type=int, default=8, help="Number of subprocesses for data loading")
    parser.add_argument("--n_epochs", type=int, default=40, help="Number of training epochs")
    parser.add_argument("--train_batch_size", type=int, default=1, help="Batch size for training")
    parser.add_argument("--valid_batch_size", type=int, default=1, help="Batch size for validation")
    parser.add_argument("--max_history", type=int, default=15, help="Number of previous exchanges to keep in history")
    parser.add_argument("--scheduler", type=str, default="noam", choices=['noam', 'linear'], help="method of optim")
    parser.add_argument("--n_emd", type=int, default=768, help="Number of n_emd in config file (for noam)")
    parser.add_argument("--lr", type=float, default=5e-5, help="Learning rate")
    parser.add_argument("--eval_before_start", action='store_true',
                        help="If true start with a first evaluation before training")
    parser.add_argument("--warmup_steps", type=int, default=5000, help="Warm up steps")
    parser.add_argument("--valid_steps", type=int, default=5000, help="Perfom validation every X steps")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=64,
                        help="Accumulate gradients on several steps")
    parser.add_argument("--max_norm", type=float, default=1.0, help="Clipping gradient norm")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu",
                        help="Device (cuda or cpu)")
    parser.add_argument("--fp16", type=str, default="",
                        help="Set to O0, O1, O2 or O3 for fp16 training (see apex documentation)")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="Local rank for distributed training (-1: not distributed)")
    args = parser.parse_args()
    print('cuda ',torch.cuda.is_available())
    # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process.
    # logger.info => log main process only, logger.warning => log all processes
    logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Running process %d", args.local_rank)
    logger.info("Arguments: %s", pformat(args))

    # Initialize distributed training if needed
    args.distributed = (args.local_rank != -1)
    '''if args.distributed:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
    '''
    args.device = torch.device("cuda")
    print('device ',args.device)
    logger.info("Prepare tokenizer, pretrained model and optimizer - add special tokens for fine-tuning")
    #model_class = OpenAIGPTLMHeadModel if not args.gpt2 else GPT2LMHeadModel
    #config_class = OpenAIGPTConfig if not args.gpt2 else GPT2Config
    model_class = GPT2LMHeadModel
    config_class = GPT2Config
    tokenizer_class = BertTokenizer
    print('pretrained:',args.pretrained)
    if args.pretrained:
        print("----------------pretrained")
        tokenizer = BertTokenizer.from_pretrained(args.model_checkpoint, do_lower_case=True)
        model = GPT2LMHeadModel.from_pretrained(args.model_checkpoint)
    else:
        tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-cluecorpussmall")
        model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-cluecorpussmall",from_tf=True)
        #print('generate')
        #print(text_generator("这是很久之前的事情了", max_length=100, do_sample=True))

    #args.device=torch.device("cuda", 2)
    
    model.to(args.device)
    
    optimizer = AdamW([{'params': model.parameters(), 'initial_lr': args.lr}], lr=args.lr, correct_bias=True)

    logger.info("Prepare datasets")
    loader_class = build_dist_loaders if not args.data_path else build_dataloaders
    train_loader, val_loader, train_sampler, valid_sampler = loader_class(args, tokenizer, logger)

    logger.info("Prepare datasets ends")
    # Prepare model for FP16 and distributed training if needed (order is important, distributed should be the last)
    if args.fp16:
        from apex import amp  # Apex is only required if we use fp16 training
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16)
    if args.distributed:
        model = DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)
        model=model.module
    #if isinstance(model,torch.nn.DataParallel):
    
    #print('params:',params_count(model))

    #tokens_embed = model.transformer.get_input_embeddings()
    # Training function and trainer
    def update(engine, batch):
        input_ids, token_type_ids, lm_labels = tuple(input_tensor.to(args.device) for input_tensor in batch)
        
        #for i in range(input_ids.size()[0]):
        #    for j in range(input_ids.size()[1]):
        #        if input_ids[i,j]==-1:
        #            input_ids[i,j]=-100
        #        if lm_labels[i,j]==-1:
        #            lm_labels[i,j]=-100
        #one=torch.tensor(-100)
        #input_ids=torch.where(input_ids==-1,one,input_ids)
        #lm_labels=torch.where(lm_labels==-1,one,lm_labels)
        #print('traindata',input_ids,lm_labels)

        #lm_labels=input_ids
        r'''input_shape = input_ids.siz`e`()
        input_ids = input_ids.view(-1, input_shape[-1])
        inputs_embeds = tokens_embed(input_ids) * math.sqrt(tokens_embed.embedding_dim)'''

        model.train()
        #(lm_loss), *_ = model(inputs_embeds=inputs_embeds, labels=lm_labels,return_dict=0)
        (lm_loss), *_ = model(input_ids=input_ids, labels=lm_labels,return_dict=False)
        #print('lm_loss',lm_loss)
        loss = lm_loss / args.gradient_accumulation_steps
        if args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_norm)
        else:
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
        if engine.state.iteration % args.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item(), optimizer.param_groups[0]['lr']

    trainer = Engine(update)
    

    # Evaluation function and evaluator (evaluator output is the input of the metrics)
    cntepoch=0
    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            input_ids, token_type_ids, lm_labels = tuple(input_tensor.to(args.device) for input_tensor in batch)
            # logger.info(tokenizer.decode(input_ids[0, -1, :].tolist()))
            #one = torch.tensor(-100)
            #input_ids=torch.where(input_ids==-1,one,input_ids)
            #print('validdata',input_ids,lm_labels)
            #lm_labels=input_ids
            r'''input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            inputs_embeds = tokens_embed(input_ids) * math.sqrt(tokens_embed.embedding_dim)'''
            

            #lm_logits, *_ = model(inputs_embeds=inputs_embeds,return_dict=0)
            lm_logits, *_ = model(input_ids=input_ids,return_dict=False)
            lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(-1, lm_logits.size(-1))
            lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1)
            return lm_logits_flat_shifted, lm_labels_flat_shifted
        cntepoch+=1
        torch.save(args, tb_logger.writer.logdir + '_%s/model_training_args.bin'%(str(cntepoch)))

    evaluator = Engine(inference)

    # Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch
    trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: evaluator.run(val_loader))
    if args.n_epochs < 1:
        trainer.add_event_handler(Events.COMPLETED, lambda _: evaluator.run(val_loader))
    if args.eval_before_start:
        trainer.add_event_handler(Events.STARTED, lambda _: evaluator.run(val_loader))

    # Evaluation during training
    @trainer.on(Events.ITERATION_STARTED)
    def log_iterations(engine):
        # if engine.state.iteration % max(int(0.1 * len(train_loader)), 1) == 0:
        if engine.state.iteration % args.valid_steps == 0:
            evaluator.run(val_loader)

    # Make sure distributed data samplers split the dataset nicely between the distributed processes
    if args.distributed:
        trainer.add_event_handler(Events.EPOCH_STARTED, lambda engine: train_sampler.set_epoch(engine.state.epoch))
        evaluator.add_event_handler(Events.EPOCH_STARTED, lambda engine: valid_sampler.set_epoch(engine.state.epoch))

    # noam decrease the learning rate
    # model_size = model.config.n_embd
    model_size = args.n_emd
    noam_lambda = lambda step: (
            model_size ** (-0.5) * min((step + 1) ** (-0.5), (step + 1) * args.warmup_steps ** (-1.5)))
    noam_scheduler = LambdaLR(optimizer, lr_lambda=noam_lambda, last_epoch=args.from_step)
    scheduler = LRScheduler(noam_scheduler)
    if args.scheduler == "linear":
        scheduler = PiecewiseLinear(optimizer, "lr", [(0, args.lr), (args.n_epochs * len(train_loader), 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # Prepare metrics - note how we compute distributed metrics
    RunningAverage(output_transform=lambda x: x[0]).attach(trainer, "loss")
    RunningAverage(output_transform=lambda x: x[1]).attach(trainer, "lr")
    metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-100), output_transform=lambda x: (x[0], x[1]))}
    metrics.update({"average_nll": MetricsLambda(average_distributed_scalar, metrics["nll"], args)})
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints
    # And save model, configuration and tokenizer before we start to train
    if args.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True, mininterval=2)
        pbar.attach(trainer, metric_names=["loss", "lr"])
        evaluator.add_event_handler(Events.COMPLETED,
                                    lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir=None)
        tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]),
                         event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)
        tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()),
                                                              another_engine=trainer),
                         event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint(tb_logger.writer.logdir, 'checkpoint', save_interval=1, n_saved=6)
        # save model after evaluation
        evaluator.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {
            'mymodel': getattr(model, 'module', model)})
        trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {
            'mymodel': getattr(model, 'module', model)})  # "getattr" take care of distributed encapsulation

        torch.save(args, tb_logger.writer.logdir + '/model_training_args.bin')
        getattr(model, 'module', model).config.to_json_file(os.path.join(tb_logger.writer.logdir, CONFIG_NAME))
        tokenizer.save_vocabulary(tb_logger.writer.logdir)

    # Run the training
    trainer.run(train_loader, max_epochs=args.n_epochs)
    
    # On the main process: close tensorboard logger and rename the last checkpoint
    # (for easy re-loading with OpenAIGPTModel.from_pretrained method)
    if args.local_rank in [-1, 0] and args.n_epochs > 0:
        os.rename(checkpoint_handler._saved[-1][1][-1],
                  os.path.join(tb_logger.writer.logdir,
                               WEIGHTS_NAME))  # TODO: PR in ignite to have better access to saved file paths (cleaner)
        tb_logger.close()
예제 #22
0
def attach_handlers(run, model, optimizer, learning_rule, trainer, evaluator, train_loader, val_loader, params):
    # Metrics
    UnitConvergence(model[0], learning_rule.norm).attach(trainer.engine, 'unit_conv')

    # Tqdm logger
    pbar = ProgressBar(persist=True, bar_format=config.IGNITE_BAR_FORMAT)
    pbar.attach(trainer.engine, metric_names='all')
    tqdm_logger = TqdmLogger(pbar=pbar)
    # noinspection PyTypeChecker
    tqdm_logger.attach_output_handler(
        evaluator.engine,
        event_name=Events.COMPLETED,
        tag="validation",
        global_step_transform=global_step_from_engine(trainer.engine),
    )

    # Evaluator
    evaluator.attach(trainer.engine, Events.EPOCH_COMPLETED(every=100), train_loader, val_loader)

    # Learning rate scheduling
    lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer=optimizer,
                                                     lr_lambda=lambda epoch: 1 - epoch / params['epochs'])
    lr_scheduler = LRScheduler(lr_scheduler)
    trainer.engine.add_event_handler(Events.EPOCH_COMPLETED, lr_scheduler)

    # Early stopping
    mc_handler = ModelCheckpoint(config.MODELS_DIR, run.replace('/', '-'), n_saved=1, create_dir=True,
                                 require_empty=False,
                                 global_step_transform=global_step_from_engine(trainer.engine))
    trainer.engine.add_event_handler(Events.EPOCH_COMPLETED, mc_handler, {'m': model})

    # Create a TensorBoard logger
    tb_logger = TensorboardLogger(log_dir=os.path.join(config.TENSORBOARD_DIR, run))
    images, labels = next(iter(train_loader))
    tb_logger.writer.add_graph(copy.deepcopy(model).cpu(), images)
    tb_logger.writer.add_hparams(params, {})

    # noinspection PyTypeChecker
    tb_logger.attach_output_handler(
        evaluator.engine,
        event_name=Events.COMPLETED,
        tag="validation",
        metric_names="all",
        global_step_transform=global_step_from_engine(trainer.engine),
    )
    # noinspection PyTypeChecker
    tb_logger.attach_output_handler(
        trainer.engine,
        event_name=Events.EPOCH_COMPLETED,
        tag="train",
        metric_names=["unit_conv"]
    )
    input_shape = tuple(next(iter(train_loader))[0].shape[1:])
    tb_logger.attach(trainer.engine,
                     log_handler=WeightsImageHandler(model, input_shape),
                     event_name=Events.EPOCH_COMPLETED)
    tb_logger.attach(trainer.engine, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.EPOCH_STARTED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=WeightsScalarHandler(model, layer_names=['linear1', 'linear2']),
    #                  event_name=Events.EPOCH_COMPLETED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=WeightsHistHandler(model, layer_names=['linear1', 'linear2']),
    #                  event_name=Events.EPOCH_COMPLETED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=ActivationsHistHandler(model, layer_names=['batch_norm', 'repu']),
    #                  event_name=Events.ITERATION_COMPLETED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=NumActivationsScalarHandler(model, layer_names=['repu']),
    #                  event_name=Events.ITERATION_COMPLETED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=ActivationsScalarHandler(model, reduction=torch.mean,
    #                                                       layer_names=['batch_norm', 'repu']),
    #                  event_name=Events.ITERATION_COMPLETED)
    # tb_logger.attach(trainer.engine,
    #                  log_handler=ActivationsScalarHandler(model, reduction=torch.std,
    #                                                       layer_names=['batch_norm', 'repu']),
    #                  event_name=Events.ITERATION_COMPLETED)

    return tb_logger
예제 #23
0
파일: nn.py 프로젝트: rharish101/AdvancedML
def train_network(model: nn.Module, training_loader: DataLoader,
                  validation_loader: DataLoader):
    """Trains the given neural network model.

    Parameters
    ----------
    model (nn.Module): The PyTorch model to be trained

    training_loader (DataLoader): Training data loader

    validation_loader (DataLoader): Validation data loader
    """
    device = "cuda:0" if cast(Any, torch).cuda.is_available() else "cpu"

    if device == "cuda:0":
        model.cuda()

    optimizer = cast(Any, torch).optim.Adam(model.parameters(), lr=0.001)
    criterion = nn.MSELoss()

    trainer = create_supervised_trainer(model,
                                        optimizer,
                                        criterion,
                                        device=device)

    save_handler = Checkpoint(
        {
            "model": model,
            "optimizer": optimizer,
            "trainer": trainer
        },
        DiskSaver("dist/models", create_dir=True),
        n_saved=2,
    )
    trainer.add_event_handler(Events.EPOCH_COMPLETED(every=100), save_handler)

    # Create a logger
    tb_logger = TensorboardLogger(log_dir="logs/training" +
                                  datetime.now().strftime("-%Y%m%d-%H%M%S"),
                                  flush_secs=1)

    tb_logger.attach_output_handler(
        trainer,
        event_name=Events.ITERATION_COMPLETED,
        tag="training",
        output_transform=lambda loss: {"loss": loss},
    )

    # Training evaluator
    training_evaluator = create_supervised_evaluator(model,
                                                     metrics={
                                                         "r2": R2Score(),
                                                         "MSELoss":
                                                         Loss(criterion)
                                                     },
                                                     device=device)

    tb_logger.attach_output_handler(
        training_evaluator,
        event_name=Events.EPOCH_COMPLETED,
        tag="training",
        metric_names=["MSELoss", "r2"],
        global_step_transform=global_step_from_engine(trainer),
    )

    # Validation evaluator
    evaluator = create_supervised_evaluator(model,
                                            metrics={
                                                "r2": R2Score(),
                                                "MSELoss": Loss(criterion)
                                            },
                                            device=device)

    tb_logger.attach_output_handler(
        evaluator,
        event_name=Events.EPOCH_COMPLETED,
        tag="validation",
        metric_names=["MSELoss", "r2"],
        global_step_transform=global_step_from_engine(trainer),
    )

    @trainer.on(Events.EPOCH_COMPLETED(every=10))
    def log_training_results(trainer):
        training_evaluator.run(training_loader)

        metrics = training_evaluator.state.metrics
        print(
            f"Training Results - Epoch: {trainer.state.epoch}",
            f" Avg r2: {metrics['r2']:.2f} Avg loss: {metrics['MSELoss']:.2f}",
        )

    @trainer.on(Events.EPOCH_COMPLETED(every=10))
    def log_validation_results(trainer):
        evaluator.run(validation_loader)

        metrics = evaluator.state.metrics
        print(
            f"Validation Results - Epoch: {trainer.state.epoch}",
            f" Avg r2: {metrics['r2']:.2f} Avg loss: {metrics['MSELoss']:.2f}\n",
        )

    trainer.run(training_loader, max_epochs=int(1e6))
예제 #24
0
def trainer(
    train_batch,
    evaluate_batch,
    evaluate_data_loaders,
    metrics,
    optimizers,
):
    '''
    Create standard trainer with evaluators.

    Parameters
    ----------
    train_batch : function
        function that trains on given batch
    evaluate_batch : function
        function that evaluates a given batch
    evaluate_data_loaders: list
        data loaders that yield batches to evaluate on
    metrics : dict
        dict with one dict each for 'train' and evaluate data loader. Wrap a
        metric with trainer.Progress to show in progress bar.
    optimizers : dict
        dict with optimizers for logging

    Returns
    -------
    tuple
        trainer engine
        list of evaluator engines
        tensorboard logger
    '''

    trainer = ignite.engine.Engine(train_batch)

    for name, metric in metrics.get(PROGRESS_DESC, dict()).items():
        metric.attach(trainer, name)

    for name, metric in metrics.get(TRAIN_DESC, dict()).items():
        metric.attach(trainer, name)

    evaluators = {
        evaluator_name: ignite.engine.Engine(evaluate_batch)
        for evaluator_name in evaluate_data_loaders.keys()
    }

    for evaluator_name, evaluator in evaluators.items():
        for metric_name, metric in metrics[evaluator_name].items():
            metric.attach(evaluator, metric_name)

    tensorboard_logger = TensorboardLogger(log_dir='tb')

    EpochLogger().attach(trainer)

    # Order of attaching progress bars is important for vscode / atom
    ProgressBar(desc=TRAIN_DESC).attach(trainer,
                                        metric_names=list(
                                            metrics.get(PROGRESS_DESC,
                                                        dict()).keys()))
    tensorboard_logger.attach(
        trainer,
        OutputHandler(
            tag=PROGRESS_DESC,
            metric_names=list(metrics.get(PROGRESS_DESC, dict()).keys()),
        ),
        Events.ITERATION_COMPLETED,
    )

    MetricsLogger(TRAIN_DESC).attach(trainer,
                                     metrics.get(TRAIN_DESC, dict()).keys())
    tensorboard_logger.attach(
        trainer,
        OutputHandler(
            tag=TRAIN_DESC,
            metric_names=list(metrics.get(TRAIN_DESC, dict()).keys()),
        ),
        Events.ITERATION_COMPLETED,
    )

    def run_evaluator(evaluator_desc):
        return lambda engine: evaluators[evaluator_desc].run(
            evaluate_data_loaders[evaluator_desc])

    for evaluator_desc, evaluator in evaluators.items():
        evaluator_metric_names = list(metrics[evaluator_desc].keys())

        trainer.add_event_handler(
            Events.EPOCH_COMPLETED,
            run_evaluator(evaluator_desc),
        )

        ProgressBar(desc=evaluator_desc).attach(evaluator)
        MetricsLogger(evaluator_desc).attach(evaluator, evaluator_metric_names)
        tensorboard_logger.attach(
            evaluator,
            OutputHandler(
                tag=evaluator_desc,
                metric_names=evaluator_metric_names,
                global_step_transform=global_step_from_engine(trainer),
            ),
            Events.EPOCH_COMPLETED,
        )

    if type(optimizers) is not dict:
        optimizers = dict(optimizer=optimizers)

    for name, optimizer in optimizers.items():
        tensorboard_logger.attach(
            trainer,
            log_handler=OptimizerParamsHandler(
                tag=f'{TRAIN_DESC}/{name}',
                param_name='lr',
                optimizer=optimizer,
            ),
            event_name=Events.ITERATION_COMPLETED,
        )

    return trainer, evaluators, tensorboard_logger
예제 #25
0
def run(train_batch_size, val_batch_size, epochs, lr, momentum, log_dir):
    train_loader, val_loader = get_data_loaders(train_batch_size,
                                                val_batch_size)
    model = Net()
    device = "cpu"

    if torch.cuda.is_available():
        device = "cuda"

    model.to(device)  # Move model before creating optimizer
    optimizer = SGD(model.parameters(), lr=lr, momentum=momentum)
    criterion = nn.CrossEntropyLoss()
    trainer = create_supervised_trainer(model,
                                        optimizer,
                                        criterion,
                                        device=device)
    trainer.logger = setup_logger("Trainer")

    if sys.version_info > (3, ):
        from ignite.contrib.metrics.gpu_info import GpuInfo

        try:
            GpuInfo().attach(trainer)
        except RuntimeError:
            print(
                "INFO: By default, in this example it is possible to log GPU information (used memory, utilization). "
                "As there is no pynvml python package installed, GPU information won't be logged. Otherwise, please "
                "install it : `pip install pynvml`")

    metrics = {"accuracy": Accuracy(), "loss": Loss(criterion)}

    train_evaluator = create_supervised_evaluator(model,
                                                  metrics=metrics,
                                                  device=device)
    train_evaluator.logger = setup_logger("Train Evaluator")
    validation_evaluator = create_supervised_evaluator(model,
                                                       metrics=metrics,
                                                       device=device)
    validation_evaluator.logger = setup_logger("Val Evaluator")

    @trainer.on(Events.EPOCH_COMPLETED)
    def compute_metrics(engine):
        train_evaluator.run(train_loader)
        validation_evaluator.run(val_loader)

    tb_logger = TensorboardLogger(log_dir=log_dir)

    tb_logger.attach_output_handler(
        trainer,
        event_name=Events.ITERATION_COMPLETED(every=100),
        tag="training",
        output_transform=lambda loss: {"batchloss": loss},
        metric_names="all",
    )

    for tag, evaluator in [("training", train_evaluator),
                           ("validation", validation_evaluator)]:
        tb_logger.attach_output_handler(
            evaluator,
            event_name=Events.EPOCH_COMPLETED,
            tag=tag,
            metric_names=["loss", "accuracy"],
            global_step_transform=global_step_from_engine(trainer),
        )

    tb_logger.attach_opt_params_handler(
        trainer,
        event_name=Events.ITERATION_COMPLETED(every=100),
        optimizer=optimizer)

    tb_logger.attach(trainer,
                     log_handler=WeightsScalarHandler(model),
                     event_name=Events.ITERATION_COMPLETED(every=100))

    tb_logger.attach(trainer,
                     log_handler=WeightsHistHandler(model),
                     event_name=Events.EPOCH_COMPLETED(every=100))

    tb_logger.attach(trainer,
                     log_handler=GradsScalarHandler(model),
                     event_name=Events.ITERATION_COMPLETED(every=100))

    tb_logger.attach(trainer,
                     log_handler=GradsHistHandler(model),
                     event_name=Events.EPOCH_COMPLETED(every=100))

    def score_function(engine):
        return engine.state.metrics["accuracy"]

    model_checkpoint = ModelCheckpoint(
        log_dir,
        n_saved=2,
        filename_prefix="best",
        score_function=score_function,
        score_name="validation_accuracy",
        global_step_transform=global_step_from_engine(trainer),
    )
    validation_evaluator.add_event_handler(Events.COMPLETED, model_checkpoint,
                                           {"model": model})

    # kick everything off
    trainer.run(train_loader, max_epochs=epochs)

    tb_logger.close()
예제 #26
0
                                     end_value=LR / 4,
                                     cycle_size=TOTAL_UPDATE_STEPS // 1)

    evaluator.add_event_handler(Events.EPOCH_COMPLETED, checkpointer,
                                {'_': mude})

    trainer.add_event_handler(Events.ITERATION_COMPLETED, nan_handler)
    trainer.add_event_handler(Events.ITERATION_COMPLETED, coslr)

    GpuInfo().attach(trainer, name='gpu')
    pbar.attach(trainer,
                output_transform=lambda output: {'loss': output['loss']},
                metric_names=[f"gpu:{args.gpu} mem(%)"])

    # FIRE
    tb_logger = TensorboardLogger(log_dir=TENSORBOARD_RUN_LOG_DIR_PATH)
    tb_logger.attach(
        trainer,
        log_handler=OutputHandler(
            tag='training',
            output_transform=lambda output: {'loss': output['loss']}),
        event_name=Events.ITERATION_COMPLETED(
            every=LOG_TRAINING_PROGRESS_EVERY_N))
    tb_logger.attach(
        evaluator,
        log_handler=OutputHandler(
            tag='validation',
            metric_names='all',
            global_step_transform=global_step_from_engine(trainer)),
        event_name=Events.EPOCH_COMPLETED)
    tb_logger.attach(trainer,
예제 #27
0
def train():
    config_file = "configs/train_daily_dialog_emotion_action_config.json"
    config = Config.from_json_file(config_file)

    # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log main process only, logger.warning => log all processes
    logging.basicConfig(
        level=logging.INFO if config.local_rank in [-1, 0] else logging.WARN)
    logger.warning(
        "Running process %d", config.local_rank
    )  # This is a logger.warning: it will be printed by all distributed processes
    logger.info("Arguments: %s", pformat(config))

    # Initialize distributed training if needed
    config.distributed = (config.local_rank != -1)
    if config.distributed:
        torch.cuda.set_device(config.local_rank)
        config.device = torch.device("cuda", config.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')

    logger.info(
        "Prepare tokenizer, pretrained model and optimizer - add special tokens for fine-tuning"
    )
    tokenizer_class = GPT2Tokenizer if "gpt2" in config.model_checkpoint else OpenAIGPTTokenizer
    tokenizer = tokenizer_class.from_pretrained(config.model_checkpoint)
    model_class = GPT2DoubleHeadsModel if "gpt2" in config.model_checkpoint else OpenAIGPTDoubleHeadsModel
    model = model_class.from_pretrained(config.model_checkpoint)
    tokenizer.set_special_tokens(SPECIAL_TOKENS)
    model.set_num_special_tokens(len(SPECIAL_TOKENS))
    model.to(config.device)
    optimizer = OpenAIAdam(model.parameters(), lr=config.lr)

    # Prepare model for FP16 and distributed training if needed (order is important, distributed should be the last)
    if config.fp16:
        from apex import amp  # Apex is only required if we use fp16 training
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=config.fp16)
    if config.distributed:
        model = DistributedDataParallel(model,
                                        device_ids=[config.local_rank],
                                        output_device=config.local_rank)

    logger.info("Prepare datasets")
    train_loader, val_loader, train_sampler, valid_sampler = get_data_loaders(
        config, tokenizer)

    # Training function and trainer
    def update(engine, batch):
        model.train()
        input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids, token_emotion_ids, token_action_ids = tuple(
            input_tensor.to(config.device) for input_tensor in batch)
        lm_loss, mc_loss = model(input_ids, mc_token_ids, lm_labels, mc_labels,
                                 token_type_ids, token_emotion_ids,
                                 token_action_ids)
        loss = (lm_loss * config.lm_coef +
                mc_loss * config.mc_coef) / config.gradient_accumulation_steps
        if config.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                           config.max_norm)
        else:
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), config.max_norm)
        if engine.state.iteration % config.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item()

    trainer = Engine(update)

    # Evaluation function and evaluator (evaluator output is the input of the metrics)
    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = tuple(
                input_tensor.to(config.device) for input_tensor in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids, token_emotion_ids, token_action_ids = batch
            #logger.info(tokenizer.decode(input_ids[0, -1, :].tolist()))
            model_outputs = model(input_ids,
                                  mc_token_ids,
                                  token_type_ids=token_type_ids,
                                  token_emotion_ids=token_emotion_ids,
                                  token_action_ids=token_action_ids)
            lm_logits, mc_logits = model_outputs[0], model_outputs[
                1]  # So we can also use GPT2 outputs
            lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(
                -1, lm_logits.size(-1))
            lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1)
            return (lm_logits_flat_shifted,
                    mc_logits), (lm_labels_flat_shifted, mc_labels)

    evaluator = Engine(inference)

    # Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch
    trainer.add_event_handler(Events.EPOCH_COMPLETED,
                              lambda _: evaluator.run(val_loader))
    if config.n_epochs < 1:
        trainer.add_event_handler(Events.COMPLETED,
                                  lambda _: evaluator.run(val_loader))
    if config.eval_before_start:
        trainer.add_event_handler(Events.STARTED,
                                  lambda _: evaluator.run(val_loader))

    # Make sure distributed data samplers split the dataset nicely between the distributed processes
    if config.distributed:
        trainer.add_event_handler(
            Events.EPOCH_STARTED,
            lambda engine: train_sampler.set_epoch(engine.state.epoch))
        evaluator.add_event_handler(
            Events.EPOCH_STARTED,
            lambda engine: valid_sampler.set_epoch(engine.state.epoch))

    # Linearly decrease the learning rate from lr to zero
    scheduler = PiecewiseLinear(optimizer, "lr",
                                [(0, config.lr),
                                 (config.n_epochs * len(train_loader), 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # Prepare metrics - note how we compute distributed metrics
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    metrics = {
        "nll":
        Loss(torch.nn.CrossEntropyLoss(ignore_index=-1),
             output_transform=lambda x: (x[0][0], x[1][0])),
        "accuracy":
        Accuracy(output_transform=lambda x: (x[0][1], x[1][1]))
    }
    metrics.update({
        "average_nll":
        MetricsLambda(average_distributed_scalar, metrics["nll"], config),
        "average_accuracy":
        MetricsLambda(average_distributed_scalar, metrics["accuracy"], config)
    })
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train
    if config.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer, metric_names=["loss"])
        evaluator.add_event_handler(
            Events.COMPLETED, lambda _: pbar.log_message(
                "Validation: %s" % pformat(evaluator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir=config.log_dir)
        tb_logger.attach(trainer,
                         log_handler=OutputHandler(tag="training",
                                                   metric_names=["loss"]),
                         event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer,
                         log_handler=OptimizerParamsHandler(optimizer),
                         event_name=Events.ITERATION_STARTED)
        tb_logger.attach(evaluator,
                         log_handler=OutputHandler(tag="validation",
                                                   metric_names=list(
                                                       metrics.keys()),
                                                   another_engine=trainer),
                         event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint(tb_logger.writer.log_dir,
                                             'checkpoint',
                                             save_interval=1,
                                             n_saved=3)
        trainer.add_event_handler(
            Events.EPOCH_COMPLETED, checkpoint_handler,
            {'mymodel': getattr(model, 'module', model)
             })  # "getattr" take care of distributed encapsulation

        torch.save(config,
                   tb_logger.writer.log_dir + '/model_training_args.bin')
        getattr(model, 'module', model).config.to_json_file(
            os.path.join(tb_logger.writer.log_dir, CONFIG_NAME))
        tokenizer.save_vocabulary(tb_logger.writer.log_dir)

    # Run the training
    trainer.run(train_loader, max_epochs=config.n_epochs)

    # On the main process: close tensorboard logger and rename the last checkpoint (for easy re-loading with OpenAIGPTModel.from_pretrained method)
    if config.local_rank in [-1, 0] and config.n_epochs > 0:
        os.rename(
            checkpoint_handler._saved[-1][1][-1],
            os.path.join(tb_logger.writer.log_dir, WEIGHTS_NAME)
        )  # TODO: PR in ignite to have better access to saved file paths (cleaner)
        tb_logger.close()
예제 #28
0
def train():
    parser = ArgumentParser()
    parser.add_argument("--local_rank", type=int, default=-1)
    args = parser.parse_args()
    device = torch.device("cuda" if torch.cuda.device_count() > 1 else "cpu")
    model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
    tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

    DISTRIBUTED = args.local_rank != -1

    if DISTRIBUTED and torch.distributed.is_available():
        print("Distributed")
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        #BATCH_SIZE *= 2

    def average_distributed_scalar(scalar):
        if (not DISTRIBUTED):
            return scalar
        scalar_t = torch.tensor(
            scalar, dtype=torch.float,
            device=device) / torch.distributed.get_world_size()
        torch.distributed.all_reduce(scalar_t,
                                     op=torch.distributed.ReduceOp.SUM)
        return scalar_t.item()

    optimizer = AdamW(model.parameters(), lr=6.25e-5)

    ds = dataloader.Conv_GPT2_DataClass(tokenizer)
    v_ds = dataloader.Conv_GPT2_DataClass(tokenizer, dev=True)
    orig_added_tokens = len(tokenizer.encoder)
    num_added_tokens = tokenizer.add_special_tokens(
        dataloader.ATTR_SPECIAL_TOKENS)
    if (num_added_tokens > 0):
        model.resize_token_embeddings(new_num_tokens=orig_added_tokens +
                                      num_added_tokens)
    model = model.to(device)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        ds) if DISTRIBUTED else None
    valid_sampler = torch.utils.data.distributed.DistributedSampler(
        v_ds) if DISTRIBUTED else None

    dl = DataLoader(ds,
                    sampler=train_sampler,
                    batch_size=BATCH_SIZE,
                    shuffle=not DISTRIBUTED)
    v_dl = DataLoader(v_ds, sampler=valid_sampler, shuffle=False)

    metrics = {
        "nll":
        Loss(torch.nn.CrossEntropyLoss(ignore_index=-1),
             output_transform=lambda x: (x[0][0], x[1][0])),
    }
    metrics.update({
        "average_nll":
        MetricsLambda(average_distributed_scalar, metrics["nll"]),
    })
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])

    def update(engine, batch):
        model.train()
        batch = tuple(t.to(device) for t in batch)
        lm_loss, *_ = model(batch[0],
                            token_type_ids=batch[1],
                            lm_labels=batch[2])
        loss = lm_loss / ITERATION_STEP
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        if engine.state.iteration % ITERATION_STEP == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item()

    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = tuple(t.to(device) for t in batch)
            input_ids, token_type_ids, lm_labels = batch
            model_outputs = model(input_ids, token_type_ids=token_type_ids)
            lm_logits = model_outputs[0]
            lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(
                -1, lm_logits.size(-1))
            lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1)
            return lm_logits_flat_shifted, lm_labels_flat_shifted

    trainer = Engine(update)
    evaluator = Engine(inference)

    scheduler = PiecewiseLinear(optimizer, "lr",
                                [(0, 6.25e-5),
                                 (EPOCHS * len(ds) // BATCH_SIZE, 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # trainer.add_event_handler(Events.STARTED, lambda _: evaluator.run(v_dl))

    if DISTRIBUTED:
        trainer.add_event_handler(
            Events.EPOCH_STARTED,
            lambda engine: train_sampler.set_epoch(engine.state.epoch))
        #evaluator.add_event_handler(Events.EPOCH_STARTED, lambda engine: valid_sampler.set_epoch(engine.state.epoch))

    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")

    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    if (args.local_rank in [0, -1]):
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer, metric_names=["loss"])
        #evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir='./logs')
        tb_logger.attach(trainer,
                         log_handler=OutputHandler(tag="training",
                                                   metric_names=["loss"]),
                         event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer,
                         log_handler=OptimizerParamsHandler(optimizer),
                         event_name=Events.ITERATION_STARTED)
        #tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint('./checkpoint',
                                             '_checkpoint',
                                             n_saved=3)
        trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler,
                                  {'gpt2_qg': getattr(model, 'module', model)})

        getattr(model, 'module', model).config.to_json_file(
            os.path.join('./checkpoint', 'config'))
        tokenizer.save_pretrained('./checkpoint')

    trainer.run(dl, max_epochs=EPOCHS)

    if (args.local_rank in [0, -1]):
        tb_logger.close()
예제 #29
0
def train():
    parser = ArgumentParser()
    parser.add_argument("--dataset_path", type=str, default="", help="Path or url of the dataset. If empty download from S3.")
    parser.add_argument("--dataset_cache", type=str, default='./dataset_cache', help="Path or url of the dataset cache")
    parser.add_argument("--model_checkpoint", type=str, default="openai-gpt", help="Path, url or short name of the model")
    parser.add_argument("--num_candidates", type=int, default=2, help="Number of candidates for training")
    parser.add_argument("--max_history", type=int, default=2, help="Number of previous exchanges to keep in history")
    parser.add_argument("--train_batch_size", type=int, default=4, help="Batch size for training")
    parser.add_argument("--valid_batch_size", type=int, default=4, help="Batch size for validation")
    parser.add_argument("--gradient_accumulation_steps", type=int, default=8, help="Accumulate gradients on several steps")
    parser.add_argument("--lr", type=float, default=6.25e-5, help="Learning rate")
    parser.add_argument("--lm_coef", type=float, default=1.0, help="LM loss coefficient")
    parser.add_argument("--mc_coef", type=float, default=1.0, help="Multiple-choice loss coefficient")
    parser.add_argument("--max_norm", type=float, default=1.0, help="Clipping gradient norm")
    parser.add_argument("--n_epochs", type=int, default=3, help="Number of training epochs")
    parser.add_argument("--personality_permutations", type=int, default=1, help="Number of permutations of personality sentences")
    parser.add_argument("--eval_before_start", action='store_true', help="If true start with a first evaluation before training")
    parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device (cuda or cpu)")
    parser.add_argument("--fp16", type=str, default="", help="Set to O0, O1, O2 or O3 for fp16 training (see apex documentation)")
    parser.add_argument("--local_rank", type=int, default=-1, help="Local rank for distributed training (-1: not distributed)")
    args = parser.parse_args()

    # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log main process only, logger.warning => log all processes
    logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning("Running process %d", args.local_rank)  # This is a logger.warning: it will be printed by all distributed processes
    logger.info("Arguments: %s", pformat(args))

    # Initialize distributed training if needed
    args.distributed = (args.local_rank != -1)
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')

    logger.info("Prepare tokenizer, pretrained model and optimizer - add special tokens for fine-tuning")
    tokenizer_class = GPT2Tokenizer if "gpt2" in args.model_checkpoint else OpenAIGPTTokenizer
    tokenizer = tokenizer_class.from_pretrained(args.model_checkpoint)
    model_class = GPT2LMHeadModel if "gpt2" in args.model_checkpoint else OpenAIGPTLMHeadModel
    model = model_class.from_pretrained(args.model_checkpoint)
    tokenizer.set_special_tokens(SPECIAL_TOKENS)
    model.set_num_special_tokens(len(SPECIAL_TOKENS))
    model.to(args.device)
    optimizer = OpenAIAdam(model.parameters(), lr=args.lr)

    # Prepare model for FP16 and distributed training if needed (order is important, distributed should be the last)
    if args.fp16:
        from apex import amp  # Apex is only required if we use fp16 training
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16)
    if args.distributed:
        model = DistributedDataParallel(model, device_ids=[args.local_rank], output_device=args.local_rank)

    logger.info("Prepare datasets")
    train_loader, val_loader, train_sampler, valid_sampler = get_data_loaders(args, tokenizer)

    # Training function and trainer
    def update(engine, batch):
        model.train()
        batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
        lm_loss, mc_loss = model(*batch)
        loss = (lm_loss * args.lm_coef + mc_loss * args.mc_coef) / args.gradient_accumulation_steps
        if args.fp16:
            with amp.scale_loss(loss, optimizer) as scaled_loss:
                scaled_loss.backward()
            torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_norm)
        else:
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
        if engine.state.iteration % args.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item()
    trainer = Engine(update)

    # Evaluation function and evaluator (evaluator output is the input of the metrics)
    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = tuple(input_tensor.to(args.device) for input_tensor in batch)
            input_ids, mc_token_ids, lm_labels, mc_labels, token_type_ids = batch
            logger.info(tokenizer.decode(input_ids[0, -1, :].tolist()))
            model_outputs = model(input_ids, mc_token_ids, token_type_ids=token_type_ids)
            lm_logits, mc_logits = model_outputs[0], model_outputs[1]  # So we can also use GPT2 outputs
            lm_logits_flat_shifted = lm_logits[..., :-1, :].contiguous().view(-1, lm_logits.size(-1))
            lm_labels_flat_shifted = lm_labels[..., 1:].contiguous().view(-1)
            return (lm_logits_flat_shifted, mc_logits), (lm_labels_flat_shifted, mc_labels)
    evaluator = Engine(inference)

    # Attach evaluation to trainer: we evaluate when we start the training and at the end of each epoch
    trainer.add_event_handler(Events.EPOCH_COMPLETED, lambda _: evaluator.run(val_loader))
    if args.n_epochs < 1:
        trainer.add_event_handler(Events.COMPLETED, lambda _: evaluator.run(val_loader))
    if args.eval_before_start:
        trainer.add_event_handler(Events.STARTED, lambda _: evaluator.run(val_loader))

    # Make sure distributed data samplers split the dataset nicely between the distributed processes
    if args.distributed:
        trainer.add_event_handler(Events.EPOCH_STARTED, lambda engine: train_sampler.set_epoch(engine.state.epoch))
        evaluator.add_event_handler(Events.EPOCH_STARTED, lambda engine: valid_sampler.set_epoch(engine.state.epoch))

    # Linearly decrease the learning rate from lr to zero
    scheduler = PiecewiseLinear(optimizer, "lr", [(0, args.lr), (args.n_epochs * len(train_loader), 0.0)])
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # Prepare metrics - note how we compute distributed metrics 
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-1), output_transform=lambda x: (x[0][0], x[1][0])),
               "accuracy": Accuracy(output_transform=lambda x: (x[0][1], x[1][1]))}
    metrics.update({"average_nll": MetricsLambda(average_distributed_scalar, metrics["nll"], args),
                    "average_accuracy": MetricsLambda(average_distributed_scalar, metrics["accuracy"], args)})
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints and save model, configuration and tokenizer before we start to train
    if args.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer, metric_names=["loss"])
        evaluator.add_event_handler(Events.COMPLETED, lambda _: pbar.log_message("Validation: %s" % pformat(evaluator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir=None)
        tb_logger.attach(trainer, log_handler=OutputHandler(tag="training", metric_names=["loss"]), event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer, log_handler=OptimizerParamsHandler(optimizer), event_name=Events.ITERATION_STARTED)
        tb_logger.attach(evaluator, log_handler=OutputHandler(tag="validation", metric_names=list(metrics.keys()), another_engine=trainer), event_name=Events.EPOCH_COMPLETED)

        checkpoint_handler = ModelCheckpoint(tb_logger.writer.log_dir, 'checkpoint', save_interval=1, n_saved=3)
        trainer.add_event_handler(Events.EPOCH_COMPLETED, checkpoint_handler, {'mymodel': getattr(model, 'module', model)})  # "getattr" take care of distributed encapsulation

        torch.save(args, tb_logger.writer.log_dir + '/model_training_args.bin')
        getattr(model, 'module', model).config.to_json_file(os.path.join(tb_logger.writer.log_dir, CONFIG_NAME))
        tokenizer.save_vocabulary(tb_logger.writer.log_dir)

    # Run the training
    trainer.run(train_loader, max_epochs=args.n_epochs)

    # On the main process: close tensorboard logger and rename the last checkpoint (for easy re-loading with OpenAIGPTModel.from_pretrained method)
    if args.local_rank in [-1, 0] and args.n_epochs > 0:
        os.rename(checkpoint_handler._saved[-1][1][-1], os.path.join(tb_logger.writer.log_dir, WEIGHTS_NAME))  # TODO: PR in ignite to have better access to saved file paths (cleaner)
        tb_logger.close()
def train():
    parser = ArgumentParser()
    parser.add_argument(
        "--dataset_path",
        type=str,
        default='wikitext-2',
        help="One of ('wikitext-103', 'wikitext-2') or a dict of splits paths."
    )
    parser.add_argument("--dataset_cache",
                        type=str,
                        default='./dataset_cache',
                        help="Path or url of the dataset cache")

    parser.add_argument("--embed_dim",
                        type=int,
                        default=410,
                        help="Embeddings dim")
    parser.add_argument("--hidden_dim",
                        type=int,
                        default=2100,
                        help="Hidden dimension")
    parser.add_argument("--num_max_positions",
                        type=int,
                        default=256,
                        help="Max input length")
    parser.add_argument("--num_heads",
                        type=int,
                        default=10,
                        help="Number of heads")
    parser.add_argument("--num_layers",
                        type=int,
                        default=16,
                        help="NUmber of layers")
    parser.add_argument("--dropout", type=float, default=0.1, help="Dropout")
    parser.add_argument("--initializer_range",
                        type=float,
                        default=0.02,
                        help="Dropout")

    parser.add_argument("--train_batch_size",
                        type=int,
                        default=8,
                        help="Batch size for training")
    parser.add_argument("--valid_batch_size",
                        type=int,
                        default=8,
                        help="Batch size for validation")
    parser.add_argument("--lr",
                        type=float,
                        default=2.5e-4,
                        help="Learning rate")
    parser.add_argument("--max_norm",
                        type=float,
                        default=0.25,
                        help="Clipping gradient norm")
    parser.add_argument("--weight_decay",
                        type=float,
                        default=0.0,
                        help="Weight decay")
    parser.add_argument("--n_epochs",
                        type=int,
                        default=200,
                        help="Number of training epochs")
    parser.add_argument("--n_warmup",
                        type=float,
                        default=1000,
                        help="Number of warmup iterations")
    parser.add_argument("--eval_every",
                        type=int,
                        default=-1,
                        help="Evaluate every X steps (-1 => end of epoch)")
    parser.add_argument("--gradient_accumulation_steps",
                        type=int,
                        default=1,
                        help="Accumulate gradient")

    parser.add_argument("--device",
                        type=str,
                        default="cuda" if torch.cuda.is_available() else "cpu",
                        help="Device (cuda or cpu)")
    parser.add_argument(
        "--local_rank",
        type=int,
        default=-1,
        help="Local rank for distributed training (-1: not distributed)")
    args = parser.parse_args()

    # logging is set to INFO (resp. WARN) for main (resp. auxiliary) process. logger.info => log on main process only, logger.warning => log on all processes
    logging.basicConfig(
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
    logger.warning(
        "Running process %d", args.local_rank
    )  # This is a logger.warning: it will be printed by all distributed processes
    logger.info("Arguments: %s", pformat(
        args))  # This is a logger.info: only printed on the first process

    # Initialize distributed training if needed
    args.distributed = (args.local_rank != -1)
    if args.distributed:
        torch.cuda.set_device(args.local_rank)
        args.device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')

    logger.info("Prepare tokenizer, model and optimizer")
    tokenizer = BertTokenizer.from_pretrained(
        'bert-base-cased',
        do_lower_case=False)  # Let's use a pre-defined tokenizer
    args.num_embeddings = len(
        tokenizer.vocab
    )  # We need this to create the model at next line (number of embeddings to use)
    model = TransformerWithLMHead(args)
    model.to(args.device)
    optimizer = Adam(model.parameters(),
                     lr=args.lr,
                     weight_decay=args.weight_decay)
    logger.info("Model has %s parameters",
                sum(p.numel() for p in model.parameters() if p.requires_grad))

    # Prepare model for distributed training if needed
    if args.distributed:
        model = DistributedDataParallel(model,
                                        device_ids=[args.local_rank],
                                        output_device=args.local_rank)

    logger.info("Prepare datasets")
    train_loader, val_loader, train_sampler, valid_sampler, train_num_words, valid_num_words = get_data_loaders(
        args, tokenizer)

    # Training function and trainer
    def update(engine, batch):
        model.train()
        batch = batch.transpose(0, 1).contiguous().to(
            args.device)  # to shape [seq length, batch]
        logits, loss = model(batch, labels=batch)
        loss = loss / args.gradient_accumulation_steps
        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_norm)
        if engine.state.iteration % args.gradient_accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()
        return loss.item()

    trainer = Engine(update)

    # Evaluation function and evaluator (evaluator output is the input of the metrics)
    def inference(engine, batch):
        model.eval()
        with torch.no_grad():
            batch = batch.transpose(0, 1).contiguous().to(
                args.device)  # to shape [seq length, batch]
            logits = model(batch)
            shift_logits = logits[:-1].view(-1, logits.size(-1))
            shift_labels = batch[1:].view(-1)
            return shift_logits, shift_labels

    evaluator = Engine(inference)

    # Attach evaluation to trainer: we evaluate at the end of each epoch and every 'eval_every' iterations if needed
    trainer.add_event_handler(Events.EPOCH_COMPLETED,
                              lambda _: evaluator.run(val_loader))
    if args.eval_every > 0:
        trainer.add_event_handler(
            Events.ITERATION_COMPLETED,
            lambda engine: evaluator.run(val_loader)
            if engine.state.iteration % args.eval_every == 0 else None)
    if args.n_epochs < 1:
        trainer.add_event_handler(Events.COMPLETED,
                                  lambda _: evaluator.run(val_loader))

    # Make sure distributed data samplers split the dataset nicely between the distributed processes
    if args.distributed:
        trainer.add_event_handler(
            Events.EPOCH_STARTED,
            lambda engine: train_sampler.set_epoch(engine.state.epoch))
        evaluator.add_event_handler(
            Events.EPOCH_STARTED,
            lambda engine: valid_sampler.set_epoch(engine.state.epoch))

    # Learning rate schedule: linearly warm-up to lr and then decrease the learning rate to zero with cosine schedule
    cos_scheduler = CosineAnnealingScheduler(optimizer, 'lr', args.lr, 0.0,
                                             len(train_loader) * args.n_epochs)
    scheduler = create_lr_scheduler_with_warmup(cos_scheduler, 0.0, args.lr,
                                                args.n_warmup)
    trainer.add_event_handler(Events.ITERATION_STARTED, scheduler)

    # Prepare metrics - note how we average distributed metrics using average_distributed_scalar
    RunningAverage(output_transform=lambda x: x).attach(trainer, "loss")
    metrics = {"nll": Loss(torch.nn.CrossEntropyLoss(ignore_index=-1))}
    metrics.update({
        "average_nll":
        MetricsLambda(average_distributed_scalar, metrics["nll"], args)
    })
    metrics["average_ppl"] = MetricsLambda(math.exp, metrics["average_nll"])
    metrics["average_word_ppl"] = MetricsLambda(
        lambda x: math.exp(x * val_loader.dataset.numel() / valid_num_words),
        metrics["average_nll"])
    for name, metric in metrics.items():
        metric.attach(evaluator, name)

    # On the main process: add progress bar, tensorboard, checkpoints and save model and configuration before we start to train
    if args.local_rank in [-1, 0]:
        pbar = ProgressBar(persist=True)
        pbar.attach(trainer, metric_names=["loss"])
        evaluator.add_event_handler(
            Events.COMPLETED, lambda _: pbar.log_message(
                "Validation: %s" % pformat(evaluator.state.metrics)))

        tb_logger = TensorboardLogger(log_dir=None)
        tb_logger.attach(trainer,
                         log_handler=OutputHandler(tag="training",
                                                   metric_names=["loss"]),
                         event_name=Events.ITERATION_COMPLETED)
        tb_logger.attach(trainer,
                         log_handler=OptimizerParamsHandler(optimizer),
                         event_name=Events.ITERATION_STARTED)

        @evaluator.on(Events.COMPLETED)  # Log evaluator metrics on tensorboard
        def tb_log_metrics(engine):
            for name in metrics.keys():
                tb_logger.writer.add_scalar(name, engine.state.metrics[name],
                                            trainer.state.iteration)

        checkpoint_handler = ModelCheckpoint(tb_logger.writer.log_dir,
                                             'checkpoint',
                                             save_interval=1,
                                             n_saved=3)
        trainer.add_event_handler(
            Events.EPOCH_COMPLETED, checkpoint_handler,
            {'mymodel': getattr(model, 'module', model)
             })  # "getattr" take care of distributed encapsulation

        torch.save(args, os.path.join(tb_logger.writer.log_dir, CONFIG_NAME))

    # Run the training
    trainer.run(train_loader, max_epochs=args.n_epochs)

    # On the main process: close tensorboard logger and rename the last checkpoint for easy re-loading
    if args.local_rank in [-1, 0] and args.n_epochs > 0:
        os.rename(
            checkpoint_handler._saved[-1][1][-1],
            os.path.join(tb_logger.writer.log_dir, WEIGHTS_NAME)
        )  # TODO: PR in ignite to have better access to saved file paths (cleaner)
        tb_logger.close()