예제 #1
0
    def _test(y_pred, y, batch_size, metric_device):

        metric_device = torch.device(metric_device)
        prc = PrecisionRecallCurve(device=metric_device)

        torch.manual_seed(10 + rank)

        prc.reset()
        if batch_size > 1:
            n_iters = y.shape[0] // batch_size + 1
            for i in range(n_iters):
                idx = i * batch_size
                prc.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size]))
        else:
            prc.update((y_pred, y))

        # gather y_pred, y
        y_pred = idist.all_gather(y_pred)
        y = idist.all_gather(y)

        np_y = y.cpu().numpy()
        np_y_pred = y_pred.cpu().numpy()

        res = prc.compute()

        assert isinstance(res, Tuple)
        assert precision_recall_curve(np_y, np_y_pred)[0] == pytest.approx(res[0].cpu().numpy())
        assert precision_recall_curve(np_y, np_y_pred)[1] == pytest.approx(res[1].cpu().numpy())
        assert precision_recall_curve(np_y, np_y_pred)[2] == pytest.approx(res[2].cpu().numpy())
예제 #2
0
def test_check_compute_fn():
    y_pred = torch.zeros((8, 13))
    y_pred[:, 1] = 1
    y_true = torch.zeros_like(y_pred)
    output = (y_pred, y_true)

    em = PrecisionRecallCurve(check_compute_fn=True)

    em.reset()
    with pytest.warns(EpochMetricWarning, match=r"Probably, there can be a problem with `compute_fn`"):
        em.update(output)

    em = PrecisionRecallCurve(check_compute_fn=False)
    em.update(output)