def test_param_group_scheduler_asserts(): t1 = torch.zeros([1], requires_grad=True) t2 = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([{"params": t1, "lr": 0.1}, {"params": t2, "lr": 0.1}]) lr_scheduler1 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=0, start_value=1.0, end_value=0.0, cycle_size=10 ) lr_scheduler2 = LinearCyclicalScheduler( optimizer, "lr", param_group_index=1, start_value=1.0, end_value=0.0, cycle_size=10 ) with pytest.raises(TypeError, match=r"Argument schedulers should be a list/tuple"): ParamGroupScheduler(schedulers=None, names=["a", "b", "c"]) with pytest.raises(ValueError, match=r"Argument schedulers should be a list/tuple of parameter schedulers"): ParamGroupScheduler(schedulers=[0, 1, 2], names=["a", "b", "c"]) with pytest.raises(ValueError, match=r"Argument schedulers should be a list/tuple of parameter schedulers"): ParamGroupScheduler(schedulers=[lr_scheduler1, "2"], names=["a", "b"]) with pytest.raises(TypeError, match=r"Argument names should be a list/tuple"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names="ab") with pytest.raises(ValueError, match=r"Argument names should be a list/tuple of parameter scheduler's names"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=[1, 2]) with pytest.raises(ValueError, match=r"\d should be equal \d"): ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a"]) scheduler = ParamGroupScheduler(schedulers=[lr_scheduler1, lr_scheduler2], names=["a", "b"]) with pytest.raises(TypeError, match=r"Argument state_dict should be a dictionary"): scheduler.load_state_dict(None) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): scheduler.load_state_dict({"a": 1}) with pytest.raises(ValueError, match=r"Input state_dict contains 0 state_dicts of param group schedulers"): scheduler.load_state_dict({"schedulers": []}) with pytest.raises(ValueError, match=r"Required state attribute 'schedulers' is absent in provided state_dict"): scheduler.load_state_dict({}) with pytest.raises( ValueError, match=r"Name of scheduler from input state dict does not " r"correspond to required one" ): scheduler.load_state_dict({"schedulers": [("a", lr_scheduler1.state_dict()), ("bad_name", {})]})
def test_linear_scheduler(): with pytest.raises(TypeError, match=r"Argument optimizer should be torch.optim.Optimizer"): LinearCyclicalScheduler({}, "lr", 1, 0, cycle_size=0) tensor = torch.zeros([1], requires_grad=True) optimizer = torch.optim.SGD([tensor], lr=0.0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=0) with pytest.raises(ValueError, match=r"Argument cycle_size should be positive and larger than 1"): LinearCyclicalScheduler(optimizer, "lr", 1, 0, cycle_size=1) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10) state_dict = scheduler.state_dict() def save_lr(engine): lrs.append(optimizer.param_groups[0]["lr"]) trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 9, max_epochs=2) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, # 0.6, 0.8, ], ) ) scheduler.load_state_dict(state_dict) optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler(optimizer, "lr", 1, 0, 10, cycle_mult=2) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 10, max_epochs=3) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6, 0.8, # Cycle 2 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ], ) ) scheduler.load_state_dict(state_dict) # With float cycle_size optimizer = torch.optim.SGD([tensor], lr=0) scheduler = LinearCyclicalScheduler( optimizer, "lr", start_value=1.2, end_value=0.2, cycle_size=10.00000012, cycle_mult=1.0 ) state_dict = scheduler.state_dict() trainer = Engine(lambda engine, batch: None) trainer.add_event_handler(Events.ITERATION_STARTED, scheduler) trainer.add_event_handler(Events.ITERATION_COMPLETED, save_lr) for _ in range(2): lrs = [] trainer.run([0] * 9, max_epochs=2) assert lrs == list( map( pytest.approx, [ # Cycle 1 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.4, 0.6, 0.8, 1.0, # Cycle 2 1.2, 1.0, 0.8, 0.6, 0.4, 0.2, 0.4, 0.6, # 0.8, 1.0, ], ) ) scheduler.load_state_dict(state_dict)