def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display, detectionParameters):
	
	title =  inputImp.getTitle()
	title=title.replace('UV', 'SD')
	
	print title
	
	#trueColorImp= WindowManager.getImage(title)
	#print type( trueColorImp)
	
	# calculate are of roi 
	stats=inputImp.getStatistics()
	inputRoiArea=stats.area
	
	print inputRoi
	
	# get the bounding box of the active roi
	inputRec = inputRoi.getBounds()
	x1=long(inputRec.getX())
	y1=long(inputRec.getY())
	x2=x1+long(inputRec.getWidth())-1
	y2=y1+long(inputRec.getHeight())-1

	print x1
	print y1
	print x2
	print y2
	
	# crop the roi
	interval=FinalInterval( array([x1, y1 ,0], 'l'), array([x2, y2, 2], 'l') )
	cropped=ops.crop(interval, None, inputDataset.getImgPlus() ) 
	
	datacropped=data.create(cropped)
	display.createDisplay("cropped", datacropped)
	croppedPlus=IJ.getImage()
	
	duplicator=Duplicator()
	substackMaker=SubstackMaker()
	
	# duplicate the roi
	duplicate=duplicator.run(croppedPlus)
	#duplicate.show()
	
	# convert duplicate of roi to HSB and get brightness
	IJ.run(duplicate, "HSB Stack", "");
	brightnessPlus=substackMaker.makeSubstack(duplicate, "3-3")
	brightness=ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
	brightnessPlus.setTitle("Brightness")
	#brightnessPlus.show()
	
	# make another duplicate, split channels and get red
	duplicate=duplicator.run(croppedPlus)
	channels=ChannelSplitter().split(duplicate)
	redPlus=channels[0]
	red=ImgPlus(ImageJFunctions.wrapByte(redPlus))
	redPlus.show()
	
	# convert to lab
	IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
	IJ.selectWindow('Lab')
	labPlus=IJ.getImage()
	
	# get the A channel
	APlus=substackMaker.makeSubstack(labPlus, "2-2")
	APlus.setTitle('A')
	APlus.show()
	APlus.getProcessor().resetMinAndMax()
	APlus.updateAndDraw()
	AThresholded=threshold(APlus, -10, 50)
	
	# get the B channel
	BPlus=substackMaker.makeSubstack(labPlus, "3-3")
	BPlus.setTitle('B')
	BPlus.show()
	BPlus.getProcessor().resetMinAndMax()
	BPlus.updateAndDraw()
	BThresholded=threshold(BPlus, -10, 50)
	
	# AND the Athreshold and Bthreshold to get a map of the red pixels
	ic = ImageCalculator();
	redMask = ic.run("AND create", AThresholded, BThresholded);
	IJ.run(redMask, "Divide...", "value=255");
	#redMask.show()
	
	labPlus.close()
	
	# threshold the spots from the red channel
	thresholdedred=SpotDetectionGray(red, data, display, ops, False)
	display.createDisplay("thresholdedred", data.create(thresholdedred))
	impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
	
	# threshold the spots from the brightness channel
	thresholded=SpotDetectionGray(brightness, data, display, ops, False)
	display.createDisplay("thresholded", data.create(thresholded))
	impthresholded=ImageJFunctions.wrap(thresholded, "wrapped")
	
	# or the thresholding results from red and brightness channel
	impthresholded = ic.run("OR create", impthresholded, impthresholdedred);
	
	# convert to mask
	Prefs.blackBackground = True
	IJ.run(impthresholded, "Convert to Mask", "")
	
	# clear the region outside the roi
	clone=inputRoi.clone()
	clone.setLocation(0,0)
	Utility.clearOutsideRoi(impthresholded, clone)
	
	# create a hidden roi manager
	roim = RoiManager(True)
	
	# count the particlesimp.getProcessor().setColor(Color.green)
	countParticles(impthresholded, roim, detectionParameters.minSize, detectionParameters.maxSize, detectionParameters.minCircularity, detectionParameters.maxCircularity)
	
	# define a function to determine the percentage of pixels that are foreground in a binary image
	# inputs:
	#    imp: binary image, 0=background, 1=foreground
	#    roi: an roi
	def isRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return True
		else: return False
	
	def notRed(imp, roi):
		stats = imp.getStatistics()
	
		if (stats.mean>detectionParameters.redPercentage): return False
		else: return True

	allList=[]

	for roi in roim.getRoisAsArray():
		allList.append(roi.clone())
	
	# count particles that are red
	redList=CountParticles.filterParticlesWithFunction(redMask, allList, isRed)
	# count particles that are red
	blueList=CountParticles.filterParticlesWithFunction(redMask, allList, notRed)

	print "Total particles: "+str(len(allList))
	print "Filtered particles: "+str(len(redList))

	# for each roi add the offset such that the roi is positioned in the correct location for the 
	# original image
	[roi.setLocation(roi.getXBase()+x1, roi.getYBase()+y1) for roi in allList]
	
	# create an overlay and add the rois
	overlay1=Overlay()
		
	inputRoi.setStrokeColor(Color.green)
	overlay1.add(inputRoi)
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.red) for roi in redList]
	[CountParticles.addParticleToOverlay(roi, overlay1, Color.cyan) for roi in blueList]
	
	def drawAllRoisOnImage(imp, mainRoi, redList, blueList):
		imp.getProcessor().setColor(Color.green)
		IJ.run(imp, "Line Width...", "line=3");
		imp.getProcessor().draw(inputRoi)
		imp.updateAndDraw()
		IJ.run(imp, "Line Width...", "line=1");
		[CountParticles.drawParticleOnImage(imp, roi, Color.magenta) for roi in redList]
		[CountParticles.drawParticleOnImage(imp, roi, Color.green) for roi in blueList]
		imp.updateAndDraw()
	
	drawAllRoisOnImage(inputImp, inputRoi, redList, blueList)
	#drawAllRoisOnImage(trueColorImp, inputRoi, redList, blueList)
	
	# draw overlay
	#inputImp.setOverlay(overlay1)
	#inputImp.updateAndDraw()
	
	statsdict=CountParticles.calculateParticleStats(APlus, BPlus, redMask, roim.getRoisAsArray())
	
	print inputRoiArea

	areas=statsdict['Areas']
	poreArea=0
	for area in areas:
		poreArea=poreArea+area

	ATotal=0
	ALevels=statsdict['ALevel']
	for A in ALevels:
		ATotal=ATotal+A

	AAverage=ATotal/len(ALevels)

	BTotal=0
	BLevels=statsdict['BLevel']
	for B in BLevels:
		BTotal=BTotal+B

	BAverage=BTotal/len(BLevels)

	redTotal=0
	redPercentages=statsdict['redPercentage']
	for red in redPercentages:
		redTotal=redTotal+red

	redAverage=redTotal/len(redPercentages)
	pixwidth=inputImp.getCalibration().pixelWidth

	inputRoiArea=inputRoiArea/(pixwidth*pixwidth)
	
	print str(len(allList))+" "+str(len(redList))+" "+str(len(blueList))+" "+str(poreArea/inputRoiArea)+" "+str(redAverage)
예제 #2
0
    script_path = os.getcwd()
if "Fiji.app" in script_path:
    ss = script_path.split("Fiji.app")
    final_folder = "marcksl1 shape prescreener"
    script_path = os.path.join(ss[0], "Fiji.app", "plugins", "Scripts",
                               "Plugins", final_folder)
sys.path.insert(0, os.path.join(script_path, 'modules'))
sys.path.insert(0, os.path.join(script_path, 'classes'))

from UpdateRoiImageListener import UpdateRoiImageListener

# angle method
max_r_pix = 60
min_r_pix = 10

split_chs = ChannelSplitter().split(imp)
mch_imp = split_chs[0]
egfp_imp = split_chs[1]
egfp_imp_disp = Duplicator().run(egfp_imp)
cl_imp = split_chs[2]
#egfp_imp.show();

centres = []
projected_im_pix = []
ring_rois = []
unzip_axis = []
roi_stack = IJ.createImage("rois", egfp_imp.getWidth(), egfp_imp.getHeight(),
                           egfp_imp.getNSlices(), 16)
#roi_stack.show();

for zidx in range(cl_imp.getNSlices()):
예제 #3
0
# Check if folders are there or not   
if not os.path.exists(saveDir):     
	os.mkdir(saveDir)
	
# set up options for import
opts = ImporterOptions()
opts.setId(filename)
opts.setUngroupFiles(True)

# set up import process
process = ImportProcess(opts)
process.execute()
nseries = process.getSeriesCount()

# Channel Splitter Definition
splitter = ChannelSplitter()
 
# reader belonging to the import process
reader = process.getReader()
 
# reader external to the import process
impReader = ImagePlusReader(process)

# loop through all series in file
for i in range(0, nseries):
	print "%d/%d %s" % (i+1, nseries, process.getSeriesLabel(i)[10:])
     
	# activate series (same as checkbox in GUI)
	opts.setSeriesOn(i,True)
 
	# point import process reader to this series
예제 #4
0
from ij import IJ, ImagePlus

# Fetch an RGB image stack
imp_rgb = IJ.getImage() # IJ.openImage("http://imagej.nih.gov/ij/images/flybrain.zip")

# Define a threshold for the red channel: any values at or above
#    in the green channel will be placed into a new image
threshold = 119


# Example 1: with ImageCalculator
from ij.process import ImageProcessor
from ij.plugin import ChannelSplitter, ImageCalculator

# Split color channels
red, green, blue = ChannelSplitter().split(imp_rgb) # 3 ImagePlus
# Set threshold for each slice
for index in xrange(1, red.getNSlices() + 1):
  bp = red.getStack().getProcessor(index)
  #bp.setThreshold(threshold, 255, ImageProcessor.BLACK_AND_WHITE_LUT)
  bp.threshold(threshold) # mask is 0, background is 255
# Apply threshold: convert each slice to a mask (only 0 or 255 pixel values)
#IJ.run(red, "Convert to Mask", "method=Default background=Dark black")
red.show()

green_under_red_mask = ImageCalculator().run("and create stack", red, green)

green_under_red_mask.show()

"""
# Example 2: with ImgLib2 LoopBuilder
def main():
    #print (sys.version_info) # debug
    #print(sys.path) # debug
    data_root = r'C:\Users\dougk\Desktop\test'
    # debug
    output_root = r'C:\Users\dougk\Desktop\test'
    #debug
    #default_directory = r'C:\\Users\\Doug\\Desktop\\test';
    #data_root, output_root = file_location_chooser(default_directory);
    if (data_root is None) or (output_root is None):
        raise IOError("File location dialogs cancelled!")
    timestamp = datetime.strftime(datetime.now(), "%Y-%m-%d %H.%M.%S")
    output_path = os.path.join(output_root, (timestamp + " output"))
    for file_path in filterByFileType(os.listdir(data_root), '.tif'):
        subfolder_name = os.path.splitext(file_path)[0]
        output_subfolder = os.path.join(output_path, subfolder_name)
        print(output_subfolder)
        os.makedirs(output_subfolder)
        imps = bf.openImagePlus(os.path.join(data_root, file_path))
        imp = imps[0]
        imp.show()
        h = imp.height
        w = imp.width
        slices = imp.getNSlices()
        channels = imp.getNChannels()
        frames = imp.getNFrames()

        # rotation step - since using multiples of 90, TransformJ.Turn is more efficient
        IJ.run("Enhance Contrast", "saturated=0.35")
        angleZ = 1
        while ((angleZ % 90) > 0):
            gd = GenericDialog("Rotate?")
            gd.addMessage(
                "Define rotation angle - increments of 90. Apical at top")
            gd.addNumericField("Rotation angle", 0, 0)
            gd.showDialog()
            angleZ = int(gd.getNextNumber())

        if (angleZ > 1):
            IJ.run("TransformJ Turn",
                   "z-angle=" + str(angleZ) + " y-angle=0 x-angle=0")
            imp.close()
            imp = WindowManager.getCurrentImage()
            imp.setTitle(file_path)

        # trim time series
        IJ.run("Enhance Contrast", "saturated=0.35")
        imp.setDisplayMode(IJ.COLOR)
        WaitForUserDialog(
            "Scroll to the first frame of the period of interest and click OK"
        ).show()
        start_frame = imp.getT()
        WaitForUserDialog(
            "Scroll to the last frame of the period of interest and click OK"
        ).show()
        end_frame = imp.getT()
        trim_imp = Duplicator().run(imp, 1, channels, 1, slices, start_frame,
                                    end_frame)
        imp.close()
        trim_imp.show()
        dup_imp = Duplicator().run(trim_imp)

        # create images to process and find bounds for
        dup_imps = ChannelSplitter().split(dup_imp)
        myo_imp = dup_imps[1]
        mem_imp = dup_imps[0]
        FileSaver(myo_imp).saveAsTiffStack(
            os.path.join(output_subfolder, "myosin_channel.tif"))
        FileSaver(mem_imp).saveAsTiffStack(
            os.path.join(output_subfolder, "membrane_channel.tif"))

        # set basal bounds
        myo_imp.show()
        ImageConverter(myo_imp).convertToGray8()
        frames = myo_imp.getNFrames()
        gb = GaussianBlur()
        for fridx in range(0, frames):
            myo_imp.setSliceWithoutUpdate(fridx + 1)
            ip = myo_imp.getProcessor()
            gb.blurGaussian(ip, 5.0, 1.0, 0.02)
            # assymmetrical Gaussian
        IJ.run(myo_imp, "Convert to Mask",
               "method=Otsu background=Dark calculate")
        IJ.run("Despeckle", "stack")
        title = myo_imp.getTitle()

        # assume that first frame is good quality image...
        basal_edges = find_basal_edges(myo_imp)
        #myo_imp.hide()
        mem_imp.hide()

        # draw some edges for checking
        roim = RoiManager()
        xs = [x for x in range(1,
                               trim_imp.getWidth() + 1)]
        trim_imp.show()
        for fridx in range(0, myo_imp.getNFrames()):
            trim_imp.setPosition(2, 1, fridx + 1)
            IJ.run("Enhance Contrast", "saturated=0.35")

            roi = PolygonRoi(xs, basal_edges[fridx], Roi.POLYLINE)
            trim_imp.setRoi(roi)
            roim.addRoi(roi)
예제 #6
0
def do_angular_projection(imp,
                          max_r_pix=60,
                          min_r_pix=10,
                          generate_roi_stack=True):
    """perform ray-based projection of vessel wall, c.f. ICY TubeSkinner (Lancino 2018)"""
    Prefs.blackBackground = True
    print("do angular projection input imp = " + str(imp))
    split_chs = ChannelSplitter().split(imp)
    mch_imp = split_chs[0]
    IJ.setAutoThreshold(mch_imp, "IsoData dark stack")
    egfp_imp = split_chs[1]
    proj_imp = Duplicator().run(egfp_imp)
    cl_imp = split_chs[2]
    if generate_roi_stack:
        egfp_imp_disp = Duplicator().run(egfp_imp)
        roi_stack = IJ.createImage("rois", egfp_imp.getWidth(),
                                   egfp_imp.getHeight(), egfp_imp.getNSlices(),
                                   16)

    centres = []
    projected_im_pix = []
    ring_rois = []
    for zidx in range(cl_imp.getNSlices()):
        if ((zidx + 1) % 100) == 0:
            print("Progress = " +
                  str(round(100 * (float(zidx + 1) / cl_imp.getNSlices()))))
        projected_im_row = []
        proj_imp.setZ(zidx + 1)
        mch_imp.setZ(zidx + 1)
        bp = mch_imp.createThresholdMask()
        bp.dilate()
        bp.erode()
        bp.erode()
        bp.erode()
        mask_imp = ImagePlus("mask", bp)
        IJ.run(mask_imp, "Create Selection", "")
        roi = mask_imp.getRoi()
        proj_imp.setRoi(roi)
        IJ.run(proj_imp, "Set...", "value=0 slice")
        IJ.run(proj_imp, "Make Inverse", "")
        roi = proj_imp.getRoi()
        centre = (roi.getStatistics().xCentroid, roi.getStatistics().yCentroid)
        centres.append(centre)
        ring_roi_xs = []
        ring_roi_ys = []
        for theta in range(360):
            pt1 = (centre[0] + min_r_pix * math.cos(math.radians(theta)),
                   centre[1] + min_r_pix * math.sin(math.radians(theta)))
            pt2 = (centre[0] + max_r_pix * math.cos(math.radians(theta)),
                   centre[1] + max_r_pix * math.sin(math.radians(theta)))
            roi = Line(pt1[0], pt1[1], pt2[0], pt2[1])
            proj_imp.setRoi(roi)
            profile = roi.getPixels()
            projected_im_row.append(max(profile))
            try:
                ring_roi_xs.append(roi.getContainedPoints()[profile.index(
                    max(profile))].x)
            except IndexError:
                ring_roi_xs.append(pt2[0])
            try:
                ring_roi_ys.append(roi.getContainedPoints()[profile.index(
                    max(profile))].y)
            except IndexError:
                ring_roi_ys.append(pt2[1])
            proj_imp.killRoi()
        ring_roi = PolygonRoi(ring_roi_xs, ring_roi_ys, Roi.FREELINE)
        ring_rois.append(ring_roi)
        if generate_roi_stack:
            roi_stack.setZ(zidx + 1)
            roi_stack.setRoi(ring_roi)
            IJ.run(roi_stack, "Line to Area", "")
            IJ.run(
                roi_stack, "Set...",
                "value=" + str(roi_stack.getProcessor().maxValue()) + " slice")
        #egfp_imp.setRoi(ring_roi);
        projected_im_pix.append(projected_im_row)


#	for ch in split_chs:
#		ch.close();

    out_imp = ImagePlus(
        "projected", FloatProcessor([list(x) for x in zip(*projected_im_pix)]))

    if generate_roi_stack:
        roi_stack.show()
        egfp_imp_disp.show()
        # merge?
    else:
        roi_stack = None
    return out_imp, roi_stack, ring_rois, centres
예제 #7
0
def do_slicewise_unwrap(imp):
    """at each position along the lumen axis, get a shell from around the lumen and take the maximum in the cell channel"""
    split_chs = ChannelSplitter().split(imp)
    mch_imp = split_chs[0]
    egfp_imp = split_chs[1]
    cl_imp = split_chs[2]

    mch_imp.show()
    egfp_imp.show()

    IJ.setAutoThreshold(mch_imp, "IsoData light stack")

    centres = []
    for zidx in range(200, 202):
        print(zidx)
        mch_imp.setZ(zidx + 1)
        cl_imp.setZ(zidx + 1)
        ip = cl_imp.getProcessor()
        maxpt = MaximumFinder().getMaxima(ip, 10, True)
        centre = (maxpt.xpoints[0], maxpt.ypoints[0])
        centres.append(centre)
        bp = mch_imp.createThresholdMask()
        bp.erode()
        bp.dilate()
        mask_imp = ImagePlus("mask", bp)
        IJ.run(mask_imp, "Create Selection", "")
        roi = mask_imp.getRoi()
        print([(x, y) for x, y in zip(roi.getInterpolatedPolygon().xpoints,
                                      roi.getPolygon().ypoints)])

    mask_imp.show()
    cl_imp.close()


#Prefs.blackBackground = True;

#out_imp, _, ring_rois, centres = do_angular_projection(imp, generate_roi_stack=True);
#IJ.setAutoThreshold(out_imp, "Intermodes dark");
#threshold_val = out_imp.getProcessor().getMinThreshold();
#unwrapped_projection_imp, unwrap_axis = twist_and_unwrap(out_imp);
#r_imp, mask_imp = generate_r_image(out_imp, ring_rois, centres, unwrap_axis, threshold_val);

#r_imp.show();
#out_imp.close();
#unwrapped_projection_imp.show();
#area, aspect_ratio = calculate_area_and_aspect_ratio(r_imp, mask_imp, 0.108333);
#print("A = " + str(area));
#print("Aspect ratio = " + str(aspect_ratio));
#
#test_path = "C:\\Users\\dougk\\Desktop\\tile_imp_test.tif";
#tile_imp = IJ.openImage(test_path);
#tile_imp.show();
#IJ.setTool("freeline");
#WaitForUserDialog("draw line").show();
#roi  = tile_imp.getRoi();
#unwrap_poly = roi.getPolygon();
#unwrap_poly_xs = [x for x in unwrap_poly.xpoints];
#unwrap_poly_ys = [y for y in unwrap_poly.ypoints];
## extend to the top and bottom of the image:
#unwrap_poly_xs.insert(0, unwrap_poly_xs[0]);
#unwrap_poly_xs.append(unwrap_poly_xs[-1])
#if unwrap_poly_ys[0] < unwrap_poly_ys[-1]:
#	unwrap_poly_ys.insert(0, 1);
#	unwrap_poly_ys.append(tile_imp.getHeight());
#else:
#	unwrap_poly_ys.insert(0, tile_imp.getHeight());
#	unwrap_poly_ys.append(1);
#unwrap_axis = [(x, y) for (x, y) in zip(unwrap_poly_xs, unwrap_poly_ys)];
#out_imp = do_unwrap(tile_imp, unwrap_axis)
예제 #8
0
from ij.gui import WaitForUserDialog, Roi, PolygonRoi
from ij.plugin import ChannelSplitter, Straightener, ZProjector

# run on imp containing result of tubefitter + IJ.run(imp, "Reslice [/]...", "output=1.000 start=Top avoid") + spline-fitted 
# manual roi copied from z-projected version of this resliced image (add roi from z-proj to ROI manager, then add 
# to resliced image)

imp.killRoi();
IJ.run(imp, "Reslice [/]...", "output=1.000 start=Top avoid");
rot_imp = IJ.getImage();
crop_roi = Roi(10, 0, rot_imp.getWidth()-20, rot_imp.getHeight());
rot_imp.setRoi(crop_roi);
rot_imp.crop();
rot_imp.show();
WaitForUserDialog("pause").show();
split_ch = ChannelSplitter().split(rot_imp);
mch_imp = split_ch[0];
egfp_imp = split_ch[1];
roi_imp = split_ch[2];
zproj_imp = ZProjector.run(roi_imp, "max");
IJ.setRawThreshold(zproj_imp, 33153, 65535, None);
IJ.run(zproj_imp, "Make Binary", "")
zproj_imp.show();
raise error;
IJ.run(zproj_imp, "Skeletonize", "");
IJ.run(zproj_imp, "Create Selection", "");
roi = zproj_imp.getRoi();
floatpoly = roi.getContainedFloatPoints();
roi = PolygonRoi(floatpoly, Roi.FREELINE);
zproj_imp.setRoi(roi);
WaitForUserDialog("pause").show();
예제 #9
0
    parameters = {}
    parameters['avgI_low'] = 0.25
    parameters['avgI_high'] = 0.65
    parameters['cellsigma'] = 4
    parameters['cellmethod'] = 'Triangle'
    parameters['cellsize'] = '10000-5000000'
    parameters['cellcircularity'] = '0.20-1.00'
    parameters['nucsigma'] = 4
    parameters['nucmethod'] = 'Otsu'
    parameters['nucsize'] = '3500-10000'
    parameters['nuccircularity'] = '0.5-1.00'
    parameters['test'] = 0

#Class constructors
rm = RoiManager()
cs = ChannelSplitter()
rmi = rm.getInstance()

#Input and output directories
inputPath = str(inputPath)
outputPath = str(outputPath)

imagelist = [
    f for f in os.listdir(os.path.join(inputPath)) if f.lower()[0].isalnum()
]

for sample in imagelist:
    rmi.reset()
    IJ.run('Close All')
    sample_label = sample.split('.')[0]
    outputFile = os.path.join(outputPath, sample_label + '.zip')
예제 #10
0
def poreDetectionUV(inputImp, inputDataset, inputRoi, ops, data, display,
                    detectionParameters):

    # set calibration
    detectionParameters.setCalibration(inputImp)

    # calculate area of roi
    stats = inputImp.getStatistics()
    inputRoiArea = stats.area

    # get the bounding box of the active roi
    inputRec = inputRoi.getBounds()
    x1 = long(inputRec.getX())
    y1 = long(inputRec.getY())
    x2 = x1 + long(inputRec.getWidth()) - 1
    y2 = y1 + long(inputRec.getHeight()) - 1

    # crop the roi
    interval = FinalInterval(array([x1, y1, 0], 'l'), array([x2, y2, 2], 'l'))
    #cropped=ops.image().crop(interval, None, inputDataset.getImgPlus() )
    cropped = ops.image().crop(inputDataset.getImgPlus(), interval)

    datacropped = data.create(cropped)
    display.createDisplay("cropped", datacropped)
    croppedPlus = IJ.getImage()

    # instantiate the duplicator and the substackmaker classes
    duplicator = Duplicator()
    substackMaker = SubstackMaker()

    # duplicate the roi
    duplicate = duplicator.run(croppedPlus)

    # convert duplicate of roi to HSB and get brightness
    IJ.run(duplicate, "HSB Stack", "")
    brightnessPlus = substackMaker.makeSubstack(duplicate, "3-3")
    brightness = ImgPlus(ImageJFunctions.wrapByte(brightnessPlus))
    brightnessPlus.setTitle("Brightness")
    #brightnessPlus.show()

    # make another duplicate, split channels and get red
    duplicate = duplicator.run(croppedPlus)
    channels = ChannelSplitter().split(duplicate)
    redPlus = channels[0]
    red = ImgPlus(ImageJFunctions.wrapByte(redPlus))

    # convert to lab
    IJ.run(croppedPlus, "Color Transformer", "colour=Lab")
    IJ.selectWindow('Lab')
    labPlus = IJ.getImage()

    croppedPlus.changes = False
    croppedPlus.close()

    # get the A channel
    APlus = substackMaker.makeSubstack(labPlus, "2-2")
    APlus.setTitle('A')
    #APlus.show()
    APlus.getProcessor().resetMinAndMax()
    #APlus.updateAndDraw()
    AThresholded = threshold(APlus, -10, 50)

    # get the B channel
    BPlus = substackMaker.makeSubstack(labPlus, "3-3")
    BPlus.setTitle('B')
    #BPlus.show()
    BPlus.getProcessor().resetMinAndMax()
    #BPlus.updateAndDraw()
    BThresholded = threshold(BPlus, -10, 50)

    # AND the Athreshold and Bthreshold to get a map of the red pixels
    ic = ImageCalculator()
    redMask = ic.run("AND create", AThresholded, BThresholded)
    IJ.run(redMask, "Divide...", "value=255")

    labPlus.close()

    fast = True

    # threshold the spots from the red channel
    if (fast == False):
        thresholdedred = SpotDetectionGray(red, data, display, ops, "triangle")
        impthresholdedred = ImageJFunctions.wrap(thresholdedred, "wrapped")
    else:
        impthresholdedred = SpotDetection2(redPlus)

    # threshold the spots from the brightness channel
    if (fast == False):
        thresholded = SpotDetectionGray(brightness, data, display, ops,
                                        "triangle")
        impthresholded = ImageJFunctions.wrap(thresholded, "wrapped")
    else:
        impthresholded = SpotDetection2(brightnessPlus)

    # or the thresholding results from red and brightness channel
    impthresholded = ic.run("OR create", impthresholded, impthresholdedred)

    roim = RoiManager(True)

    # convert to mask
    Prefs.blackBackground = True
    IJ.run(impthresholded, "Convert to Mask", "")

    def isRed(imp, roi):
        stats = imp.getStatistics()

        if (stats.mean > detectionParameters.porphyrinRedPercentage):
            return True
        else:
            return False

    def notRed(imp, roi):
        stats = imp.getStatistics()

        if (stats.mean > detectionParameters.porphyrinRedPercentage):
            return False
        else:
            return True

    roiClone = inputRoi.clone()
    roiClone.setLocation(0, 0)
    Utility.clearOutsideRoi(impthresholded, roiClone)

    impthresholded.show()

    countParticles(impthresholded, roim, detectionParameters.porphyrinMinSize, detectionParameters.porphyrinMaxSize, \
     detectionParameters.porphyrinMinCircularity, detectionParameters.porphyrinMaxCircularity)

    uvPoreList = []
    for roi in roim.getRoisAsArray():
        uvPoreList.append(roi.clone())

    #allList=uvPoreList+closedPoresList+openPoresList

    # count particles that are porphyrins (red)
    porphyrinList = CountParticles.filterParticlesWithFunction(
        redMask, uvPoreList, isRed)
    # count particles that are visible on uv but not porphyrins
    sebumList = CountParticles.filterParticlesWithFunction(
        redMask, uvPoreList, notRed)

    # for each roi add the offset such that the roi is positioned in the correct location for the
    # original image
    [
        roi.setLocation(roi.getXBase() + x1,
                        roi.getYBase() + y1) for roi in uvPoreList
    ]

    # draw the ROIs on to the image
    inputImp.getProcessor().setColor(Color.green)
    IJ.run(inputImp, "Line Width...", "line=3")
    inputImp.getProcessor().draw(inputRoi)
    IJ.run(inputImp, "Line Width...", "line=1")
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.magenta)
        for roi in porphyrinList
    ]
    [
        CountParticles.drawParticleOnImage(inputImp, roi, Color.green)
        for roi in sebumList
    ]
    inputImp.updateAndDraw()

    # calculate stats for the UV visible particles
    detectionParameters.setCalibration(APlus)
    statsDictUV = CountParticles.calculateParticleStatsUV(
        APlus, BPlus, redMask, roim.getRoisAsArray())

    totalUVPoreArea = 0
    for area in statsDictUV['Areas']:
        totalUVPoreArea = totalUVPoreArea + area
    averageUVPoreArea = totalUVPoreArea / len(statsDictUV['Areas'])

    poreDiameter = 0
    for diameter in statsDictUV['Diameters']:
        poreDiameter = poreDiameter + diameter
    poreDiameter = poreDiameter / len(statsDictUV['Diameters'])

    redTotal = 0

    for red in statsDictUV['redPercentage']:
        redTotal = redTotal + red
    redAverage = redTotal / len(statsDictUV['redPercentage'])

    statslist = [len(porphyrinList), 100 * redAverage]
    statsheader = [Messages.Porphyrins, Messages.PercentageRedPixels]

    print("Roi Area: " + str(inputRoiArea))
    print("Total Pore Area: " + str(totalUVPoreArea))
    print("Average Pore Area: " + str(averageUVPoreArea))
    print str(len(uvPoreList)) + " " + str(len(porphyrinList)) + " " + str(
        len(sebumList)) + " " + str(
            100 * totalUVPoreArea / inputRoiArea) + " " + str(100 * redAverage)
    print "cp min circularity" + str(
        detectionParameters.closedPoresMinCircularity) + ":" + str(
            detectionParameters.closedPoresMinSize)

    # close the thresholded image
    impthresholded.changes = False
    impthresholded.close()

    return uvPoreList, statslist, statsheader