def cvt_32_bit_to_8_bit(imp): """ cvt_32_bit_to_8_bit(imp) Convert a 32 bit image to an 8-bit grayscale Parameters ========== imp: ImagePlus The ImagePlus of a 32 bit/px image to convert Returns ======= wrk: ImagePlus The ImagePlus with the 8-bit/px image """ imp.show() wrk = imp.duplicate() ic = ImageConverter(wrk) ic.convertToGray8() title = imp.getTitle() wrk.setTitle(title + "_g8") wrk.updateImage() return wrk
def run(): helpText = "This program will batch convert any tif image to 8-bit greyscale, " + \ "and empty calibration infomation.\n\n" + \ ">> Press OK to Select a directory of TIFF images." MessageDialog(IJ.getInstance(), "Empty Calibration Guide", helpText) srcDir = DirectoryChooser("Chose Source Dir").getDirectory() if srcDir is None: IJ.log("Choose Dir Canceled!") return for root, directories, filenames in os.walk(srcDir): for filename in filenames: if not filename.endswith(".tif"): continue imgPath = os.path.join(root, filename) outPath = os.path.join(root, "decal-" + filename) imp = IJ.openImage(imgPath) imp.setCalibration(Calibration()) ic = ImageConverter(imp) ic.convertToGray8() IJ.saveAsTiff(imp, outPath) print "removed calibration and saved to ", os.path.basename( outPath)
def convertAndSaveFile(fullFilePath, convertTo8Bit=False, allowOverwrite=False): """ """ print(' convertAndSaveFile() fullFilePath:', fullFilePath) folderPath, fileName = os.path.split(fullFilePath) fileNameNoExtension = os.path.splitext(fileName)[0] saveFileNoExtension = os.path.join(folderPath, fileNameNoExtension) # # load file and build a dict of parameters like (channels, pixels, voxels) myFileInfo, imp = bSimpleFileInfo.myLoadFile(fullFilePath, doShow=True) if convertTo8Bit: # from (ImagePlus.GRAY8, ImagePlus.GRAY16, ImagePlus.GRAY32, ImagePlus.COLOR_256 or ImagePlus.COLOR_RGB) myType = imp.getType() if myType in [1,2]: ic = ImageConverter(imp) # converts channelImp in place scaleConversions = True ic.setDoScaling(scaleConversions) # scales inensities to fill 0...255 ic.convertToGray8() # # split channels channelArray = ChannelSplitter.split(imp) # returns an array of imp for channelIdx, channelImp in enumerate(channelArray): # channelImp is an imp, this will NOT have fileinfo (we just created it) #channelImp.show() saveFilePath = saveFileNoExtension + '_ch' + str(channelIdx+1) + '.tif' print(' ch:', channelIdx+1, 'saveFilePath:', saveFilePath) if not allowOverwrite and os.path.isfile(saveFilePath): print(' . not saving, file already exists', saveFilePath) else: IJ.save(channelImp, saveFilePath) return myFileInfo
def run(): helpText = "This program will batch convert any tif image to 8-bit greyscale, " + \ "and empty calibration infomation.\n\n" + \ ">> Press OK to Select a directory of TIFF images." MessageDialog(IJ.getInstance(),"Empty Calibration Guide", helpText) srcDir = DirectoryChooser("Chose Source Dir").getDirectory() if srcDir is None: IJ.log("Choose Dir Canceled!") return for root, directories, filenames in os.walk(srcDir): for filename in filenames: if not filename.endswith(".tif"): continue imgPath = os.path.join(root, filename) outPath = os.path.join(root, "decal-" + filename) imp = IJ.openImage(imgPath) imp.setCalibration(Calibration()) ic = ImageConverter(imp) ic.convertToGray8() IJ.saveAsTiff(imp, outPath) print "removed calibration and saved to ", os.path.basename(outPath)
def getGrayScaleImage(currIP, c, chanName, cfg): if (cfg.hasValue(ELMConfig.upperLeftExclusionX)): ulExclusionX = cfg.getValue(ELMConfig.upperLeftExclusionX) else: ulExclusionX = 0 if (cfg.hasValue(ELMConfig.upperLeftExclusionY)): ulExclusionY = cfg.getValue(ELMConfig.upperLeftExclusionY) else: ulExclusionY = 0 if (cfg.hasValue(ELMConfig.lowerRightExclusionX)): lrExclusionX = cfg.getValue(ELMConfig.lowerRightExclusionX) else: lrExclusionX = currIP.getWidth() if (cfg.hasValue(ELMConfig.lowerRightExclusionY)): lrExclusionY = cfg.getValue(ELMConfig.lowerRightExclusionY) else: lrExclusionY = currIP.getHeight() imgType = currIP.getType() if (chanName in cfg.getValue( ELMConfig.chansToSkip)): # Don't process skip channels currIP.close() return None elif imgType == ImagePlus.COLOR_RGB or imgType == ImagePlus.COLOR_256: if (chanName == ELMConfig.BRIGHTFIELD): toGray = ImageConverter(currIP) toGray.convertToGray8() elif (chanName == ELMConfig.BLUE) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): # chanIdx = 2 if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED): chanIdx = 0 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): chanIdx = 1 imgChanns = ChannelSplitter.split(currIP) currIP.close() currIP = imgChanns[chanIdx] # Clear the Exclusion zone, so it doesn't mess with thresholding imgProc = currIP.getProcessor() imgProc.setColor(Color(0, 0, 0)) imgProc.fillRect(lrExclusionX, lrExclusionY, currIP.getWidth(), currIP.getHeight()) imgProc.fillRect(0, 0, ulExclusionX, ulExclusionY) elif (chanName == ELMConfig.YELLOW): # Clear the Exclusion zone, so it doesn't mess with thresholding imgProc = currIP.getProcessor() imgProc.setColor(Color(0, 0, 0)) imgProc.fillRect(lrExclusionX, lrExclusionY, currIP.getWidth(), currIP.getHeight()) imgProc.fillRect(0, 0, ulExclusionX, ulExclusionY) # Create a new image that consists of the average of the red & green channels title = currIP.getTitle() width = currIP.getWidth() height = currIP.getHeight() newPix = ByteProcessor(width, height) for x in range(0, width): for y in range(0, height): currPix = currIP.getPixel(x, y) newPix.putPixel(x, y, (currPix[0] + currPix[1]) / 2) currIP.close() currIP = ImagePlus(title, newPix) else: print "ERROR: Unrecognized channel name! Name: " + chanName currIP.close() return None elif imgType == ImagePlus.GRAY16 or imgType == ImagePlus.GRAY32 or imgType == ImagePlus.GRAY8: if not imgType == ImagePlus.GRAY8: toGray = ImageConverter(currIP) toGray.convertToGray8() else: print "ERROR: Unrecognized channel name & image type! Channel: " + chanName + ", imgType: " + str( imgType) currIP.close() return None return currIP
def getThresholdedMask(currIP, c, z, t, chanName, cfg, wellPath, dbgOutDesc): if (cfg.hasValue(ELMConfig.upperLeftExclusionX)): ulExclusionX = cfg.getValue(ELMConfig.upperLeftExclusionX) else: ulExclusionX = 0 if (cfg.hasValue(ELMConfig.upperLeftExclusionY)): ulExclusionY = cfg.getValue(ELMConfig.upperLeftExclusionY) else: ulExclusionY = 0 if (cfg.hasValue(ELMConfig.lowerRightExclusionX)): lrExclusionX = cfg.getValue(ELMConfig.lowerRightExclusionX) else: lrExclusionX = currIP.getWidth() if (cfg.hasValue(ELMConfig.lowerRightExclusionY)): lrExclusionY = cfg.getValue(ELMConfig.lowerRightExclusionY) else: lrExclusionY = currIP.getHeight() imgType = currIP.getType() if (chanName in cfg.getValue( ELMConfig.chansToSkip)): # Don't process skip channels currIP.close() return None elif imgType == ImagePlus.COLOR_RGB or imgType == ImagePlus.COLOR_256: if (chanName == ELMConfig.BRIGHTFIELD): toGray = ImageConverter(currIP) toGray.convertToGray8() if cfg.params[ELMConfig.imgType] == "png": darkBackground = True else: darkBackground = False elif (chanName == ELMConfig.BLUE) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED) \ or (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): # chanIdx = 2 if (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.RED): chanIdx = 0 elif (cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.GREEN): chanIdx = 1 imgChanns = ChannelSplitter.split(currIP) currIP.close() currIP = imgChanns[chanIdx] # Clear the Exclusion zone, so it doesn't mess with thresholding imgProc = currIP.getProcessor() imgProc.setColor(Color(0, 0, 0)) imgProc.fillRect(lrExclusionX, lrExclusionY, currIP.getWidth(), currIP.getHeight()) imgProc.fillRect(0, 0, ulExclusionX, ulExclusionY) darkBackground = True elif (chanName == ELMConfig.YELLOW): # Clear the Exclusion zone, so it doesn't mess with thresholding imgProc = currIP.getProcessor() imgProc.setColor(Color(0, 0, 0)) imgProc.fillRect(lrExclusionX, lrExclusionY, currIP.getWidth(), currIP.getHeight()) imgProc.fillRect(0, 0, ulExclusionX, ulExclusionY) # Create a new image that consists of the average of the red & green channels title = currIP.getTitle() width = currIP.getWidth() height = currIP.getHeight() newPix = ByteProcessor(width, height) for x in range(0, width): for y in range(0, height): currPix = currIP.getPixel(x, y) newPix.putPixel(x, y, (currPix[0] + currPix[1]) / 2) currIP.close() currIP = ImagePlus(title, newPix) darkBackground = True else: print "ERROR: Unrecognized channel name! Name: " + chanName currIP.close() return None elif imgType == ImagePlus.GRAY16 or imgType == ImagePlus.GRAY32 or imgType == ImagePlus.GRAY8: if (chanName == ELMConfig.BRIGHTFIELD): if cfg.params[ELMConfig.imgType] == "png": darkBackground = True else: darkBackground = False else: darkBackground = True if not imgType == ImagePlus.GRAY8: toGray = ImageConverter(currIP) toGray.convertToGray8() else: print "ERROR: Unrecognized channel name & image type! Channel: " + chanName + ", imgType: " + str( imgType) currIP.close() return None WindowManager.setTempCurrentImage(currIP) if cfg.getValue(ELMConfig.debugOutput): IJ.saveAs('png', os.path.join(wellPath, "Processing_" + dbgOutDesc + ".png")) upperThreshImg = currIP.duplicate() # If threshold value is set, use it if (cfg.hasValue(ELMConfig.imageThreshold)): thresh = cfg.getValue(ELMConfig.imageThreshold) if (darkBackground): currIP.getProcessor().setThreshold(thresh, 255, ImageProcessor.NO_LUT_UPDATE) else: currIP.getProcessor().setThreshold(0, thresh, ImageProcessor.NO_LUT_UPDATE) else: # Otherise, automatically compute threshold threshMethod = "Default" if cfg.hasValue(ELMConfig.thresholdMethod): threshMethod = cfg.getValue(ELMConfig.thresholdMethod) currIP.getProcessor().setAutoThreshold(threshMethod, darkBackground, ImageProcessor.NO_LUT_UPDATE) threshRange = currIP.getProcessor().getMaxThreshold( ) - currIP.getProcessor().getMinThreshold() #print "\t\tZ = " + str(z) + ", T = " + str(t) + ", chan " + chanName + ": Using default threshold of minThresh: " + str(currIP.getProcessor().getMinThreshold()) + ", maxThresh: " + str(currIP.getProcessor().getMaxThreshold()) if currIP.getType() != ImagePlus.GRAY8: print "\tChannel " + chanName + " is not GRAY8, instead type is %d" % currIP.getType( ) if threshRange > cfg.getValue(ELMConfig.maxThreshRange): if (cfg.hasValue(ELMConfig.defaultThreshold)): thresh = cfg.getValue(ELMConfig.defaultThreshold) print "\t\tZ = " + str(z) + ", T = " + str( t ) + ", chan " + chanName + ": Using default threshold of " + str( thresh) + ", minThresh: " + str(currIP.getProcessor( ).getMinThreshold()) + ", maxThresh: " + str( currIP.getProcessor().getMaxThreshold()) if (darkBackground): currIP.getProcessor().setThreshold( thresh, 255, ImageProcessor.NO_LUT_UPDATE) else: currIP.getProcessor().setThreshold( 0, thresh, ImageProcessor.NO_LUT_UPDATE) else: print "\t\tZ = " + str(z) + ", T = " + str( t ) + ", chan " + chanName + ": Ignored Objects due to threshold range! minThresh: " + str( currIP.getProcessor().getMinThreshold( )) + ", maxThresh: " + str( currIP.getProcessor().getMaxThreshold()) currIP.close() return None IJ.run(currIP, "Convert to Mask", "") # Clear out exclusion zones imgProc = currIP.getProcessor() imgProc.fillRect(lrExclusionX, lrExclusionY, currIP.getWidth(), currIP.getHeight()) imgProc.fillRect(0, 0, ulExclusionX, ulExclusionY) IJ.run(currIP, "Close-", "") # Brightfield has an additional thresholding step if cfg.getValue(ELMConfig.chanLabel)[c] == ELMConfig.BRIGHTFIELD: if cfg.getValue(ELMConfig.debugOutput): IJ.saveAs( 'png', os.path.join(wellPath, "OrigMask_" + dbgOutDesc + ".png")) upperThresh = 255 * 0.95 upperThreshImg.getProcessor().setThreshold( upperThresh, 255, ImageProcessor.NO_LUT_UPDATE) IJ.run(upperThreshImg, "Convert to Mask", "") IJ.run(upperThreshImg, "Close-", "") if cfg.getValue(ELMConfig.debugOutput): WindowManager.setTempCurrentImage(upperThreshImg) IJ.saveAs( 'png', os.path.join(wellPath, "UpperThreshMask_" + dbgOutDesc + ".png")) ic = ImageCalculator() compositeMask = ic.run("OR create", currIP, upperThreshImg) IJ.run(compositeMask, "Close-", "") currIP.close() currIP = compositeMask WindowManager.setTempCurrentImage(currIP) if cfg.getValue(ELMConfig.debugOutput): WindowManager.setTempCurrentImage(currIP) IJ.saveAs('png', os.path.join(wellPath, "Binary_" + dbgOutDesc + ".png")) upperThreshImg.close() return currIP
def process(subFolder, outputDirectory, filename): #IJ.close() imp = IJ.openImage(inputDirectory + subFolder + '/' + rreplace(filename, "_ch00.tif", ".tif")) imp.show() # Get the pixel values from the xml file for file in os.listdir(inputDirectory + subFolder): if file.endswith('.xml'): xml = os.path.join(inputDirectory + subFolder, file) xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml" element_tree = ET.parse(xml) root = element_tree.getroot() for dimensions in root.iter('DimensionDescription'): num_pixels = int(dimensions.attrib['NumberOfElements']) if dimensions.attrib['Unit'] == "m": length = float(dimensions.attrib['Length']) * 1000000 else: length = float(dimensions.attrib['Length']) pixel_length = length / num_pixels else: pixel_length = 0.8777017 IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=" + str(pixel_length) + " pixel_height=" + str(pixel_length) + " voxel_depth=25400.0508001") ic = ImageConverter(imp) ic.convertToGray8() #IJ.setThreshold(imp, 2, 255) #Automatically selects the area of the organoid based on automated thresholding and creates a mask to be applied on #all other images IJ.setAutoThreshold(imp, "Mean dark no-reset") IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Analyze Particles...", "size=100000-Infinity add select") rm = RoiManager.getInstance() num_roi = rm.getCount() for i in num_roi: imp = getCurrentImage() rm.select(imp, i) IJ.setBackgroundColor(0, 0, 0) IJ.run(imp, "Clear Outside", "") IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Dark") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Bright") # Save the mask and open it IJ.saveAs("tiff", inputDirectory + '/mask' + i) mask = IJ.openImage(inputDirectory + '/mask' + i + '.tif') if not displayImages: imp.changes = False imp.close() images = [None] * 5 intensities = [None] * 5 blobsarea = [None] * 5 blobsnuclei = [None] * 5 bigAreas = [None] * 5 imp.close() # Loop to open all the channel images for chan in channels: v, x = chan images[x] = IJ.openImage(inputDirectory + subFolder + '/' + rreplace(filename, "_ch00.tif", "_ch0" + str(x) + ".tif")) # Apply Mask on all the images and save them into an array apply_mask = ImageCalculator() images[x] = apply_mask.run("Multiply create 32 bit", mask, images[x]) ic = ImageConverter(images[x]) ic.convertToGray8() imp = images[x] # Calculate the intensities for each channel as well as the organoid area for roi in rm.getRoisAsArray(): imp.setRoi(roi) stats_i = imp.getStatistics(Measurements.MEAN | Measurements.AREA) intensities[x] = stats_i.mean bigAreas[x] = stats_i.area rm.close() # Opens the ch00 image and sets default properties #Get the pixel values from the xml file for file in os.listdir(subFolder): if file.endswith('.xml'): xml = os.path.join(inputDirectory + subFolder, file) xml = "C:/Users/Harris/Desktop/test_xml_for_parsing_pixel.xml" element_tree = ET.parse(xml) root = element_tree.getroot() for dimensions in root.iter('DimensionDescription'): num_pixels = int(dimensions.attrib['NumberOfElements']) if dimensions.attrib['Unit'] == "m": length = float(dimensions.attrib['Length']) * 1000000 else: length = float(dimensions.attrib['Length']) pixel_length = length / num_pixels else: pixel_length = 0.8777017 imp = IJ.openImage(inputDirectory + subFolder + '/' + filename) imp = apply_mask.run("Multiply create 32 bit", mask, imp) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=" + str(pixel_length) + "pixel_height=" + str(pixel_length) + "voxel_depth=25400.0508001") # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html ic = ImageConverter(imp) ic.convertToGray8() IJ.run(imp, "Remove Outliers...", "radius=2" + " threshold=50" + " which=Dark") IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur)) IJ.setThreshold(imp, lowerBounds[0], 255) if displayImages: imp.show() IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Watershed", "") if not displayImages: imp.changes = False imp.close() # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager table = ResultsTable() roim = RoiManager(True) ParticleAnalyzer.setRoiManager(roim) pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.setHideOutputImage(True) # imp = impM # imp.getProcessor().invert() pa.analyze(imp) areas = table.getColumn(0) # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel # It will save all the area fractions into a 2d array called areaFractionsArray areaFractionsArray = [None] * 5 for chan in channels: v, x = chan # Opens each image and thresholds imp = images[x] IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) ic.convertToGray8() IJ.setThreshold(imp, lowerBounds[x], 255) if displayImages: imp.show() WaitForUserDialog("Title", "Adjust Threshold for Marker " + v).show() IJ.run(imp, "Convert to Mask", "") # Measures the area fraction of the new image for each ROI from the ROI manager. areaFractions = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA_FRACTION) areaFractions.append(stats.areaFraction) # Saves the results in areaFractionArray areaFractionsArray[x] = areaFractions roim.close() for chan in channels: v, x = chan imp = images[x] imp.deleteRoi() roim = RoiManager(True) ParticleAnalyzer.setRoiManager(roim) pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.analyze(imp) blobs = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA) blobs.append(stats.area) blobsarea[x] = sum( blobs ) #take this out and use intial mask tissue area from the beginning blobsnuclei[x] = len(blobs) if not displayImages: imp.changes = False imp.close() roim.reset() roim.close() imp.close() # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column summary = {} summary['Image'] = filename summary['Directory'] = subFolder # Adds usual columns summary['size-average'] = 0 summary['#nuclei'] = 0 summary['all-negative'] = 0 summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0 summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0 # Creates the fieldnames variable needed to create the csv file at the end. fieldnames = [ 'Name', 'Directory', 'Image', 'size-average', 'too-big-(>' + str(tooBigThreshold) + ')', 'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei', 'all-negative' ] # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei) summary["organoid-area"] = bigAreas[x] fieldnames.append("organoid-area") for chan in channels: v, x = chan summary[v + "-positive"] = 0 fieldnames.append(v + "-positive") summary[v + "-intensity"] = intensities[x] fieldnames.append(v + "-intensity") summary[v + "-blobsarea"] = blobsarea[x] fieldnames.append(v + "-blobsarea") summary[v + "-blobsnuclei"] = blobsnuclei[x] fieldnames.append(v + "-blobsnuclei") # Adds the column for colocalization between first and second marker if len(channels) > 2: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive') # Adds the columns for colocalization between all three markers if len(channels) > 3: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive') # Loops through each particle and adds it to each field that it is True for. areaCounter = 0 for z, area in enumerate(areas): log.write(str(area)) log.write("\n") if area > tooBigThreshold: summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1 elif area < tooSmallThreshold: summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1 else: summary['#nuclei'] += 1 areaCounter += area temp = 0 for chan in channels: v, x = chan if areaFractionsArray[x][z] > areaFractionThreshold[ 0]: # theres an error here im not sure why. i remember fixing it before summary[chan[0] + '-positive'] += 1 if x != 0: temp += 1 if temp == 0: summary['all-negative'] += 1 if len(channels) > 2: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[2][z] > areaFractionThreshold[2]: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] += 1 if len(channels) > 3: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[2][z] > areaFractionThreshold[2]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[1][z] > areaFractionThreshold[1]: summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 # Calculate the average of the particles sizes if float(summary['#nuclei']) > 0: summary['size-average'] = round(areaCounter / summary['#nuclei'], 2) # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image) with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames, extrasaction='ignore', lineterminator='\n') if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1: writer.writeheader() writer.writerow(summary) IJ.run(imp, "Close All", "")
def run(imagefile): # Opening the image log.info('Opening Image: ' + imagefile) # open image file and get a specific series imp, MetaInfo = ImportTools.openfile(imagefile) log.info('File Extension : ' + MetaInfo['Extension']) if 'ResolutionCount' in MetaInfo: log.info('Resolution Count : ' + str(MetaInfo['ResolutionCount'])) if 'SeriesCount' in MetaInfo: log.info('SeriesCount : ' + str(MetaInfo['SeriesCount'])) if 'SizeC' in MetaInfo: log.info('Channel Count : ' + str(MetaInfo['SizeC'])) # do the processing log.info('Start Processing ...') # get the correct channel if MetaInfo['SizeC'] > 1: log.info('Extract Channel : ' + str(MetaInfo['ChannelCount'])) imps = ChannelSplitter.split(imp) imp = imps[CHINDEX - 1] # convert to 8bit grayscale ic = ImageConverter(imp) ic.convertToGray8() if FILL_HOLES: # 3D fill holes log.info('3D Fill Holes ...') imp = Reconstruction3D.fillHoles(imp.getImageStack()) if not FILL_HOLES: imp = imp.getImageStack() # run watershed on stack weights = ChamferWeights3D.BORGEFORS.getFloatWeights() normalize = True dynamic = 2 connectivity = LABEL_CONNECT log.info('Applying Run Watershed to separate particles ...') #dist = BinaryImages.distanceMap(imp.getImageStack(), weights, normalize) dist = BinaryImages.distanceMap(imp, weights, normalize) Images3D.invert(dist) #imp = ExtendedMinimaWatershed.extendedMinimaWatershed(dist, imp.getImageStack(), dynamic, connectivity, 32, False ) imp = ExtendedMinimaWatershed.extendedMinimaWatershed( dist, imp, dynamic, connectivity, 32, False) # extend borders log.info('Applying Border Extension ...') # create BorderManager and add Zeros in all dimensions bmType = BorderManager3D.Type.fromLabel("BLACK") bm = bmType.createBorderManager(imp) #bm = bmType.createBorderManager(imp.getStack()) BorderExt = ExtendBordersPlugin() # extend border by always exb #imp = BorderExt.process(imp.getStack(), EXB, EXB, EXB, EXB, EXB, EXB, bm) imp = BorderExt.process(imp, EXB, EXB, EXB, EXB, EXB, EXB, bm) # convert back to ImgPlus pastack = ImagePlus('Particles', imp) # check for pixel in 3d by size log.info('Filtering VoxelSize - Minimum : ' + str(MINVOXSIZE)) pastack = BinaryImages.volumeOpening(pastack.getStack(), MINVOXSIZE) imp = ImagePlus('Particles Filtered', pastack) pastack = BinaryImages.componentsLabeling(imp, LABEL_CONNECT, LABEL_BITDEPTH) # get the labels labels = LabelImages.findAllLabels(pastack) log.info('Labels Filtered : ' + str(len(labels))) # run 3D particle analysis log.info('3D Particle Analysis ...') PA3d = ParticleAnalysis3DPlugin() results = PA3d.process(pastack) # colorize the labels if LABEL_COLORIZE: log.info('Colorize Lables ...') #maxLabel = 255 maxLabel = len(labels) bgColor = Color.BLACK shuffleLut = True lutName = CommonLabelMaps.GOLDEN_ANGLE.getLabel() # Create a new LUT from info in dialog lut = CommonLabelMaps.fromLabel(lutName).computeLut( maxLabel, shuffleLut) # Create a new RGB image from index image and LUT options pastack_rgb = LabelImages.labelToRgb(pastack, lut, bgColor) # convert to rgb color IJ.run(pastack_rgb, "RGB Color", "slices") if LABEL_COLORIZE: return pastack_rgb, results, labels elif not LABEL_COLORIZE: return pastack, results, labels
def process(subDir, subsubDir, outputDirectory, filename): subFolder = subDir + "/" + subsubDir # Opens the d0 image and sets default properties imp = IJ.openImage(inputDirectory + subFolder + '/' + filename) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html ic = ImageConverter(imp) ic.convertToGray8() imp.updateAndDraw() dup = imp.duplicate() IJ.run( dup, "Convolve...", "text1=[-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 24 -1 -1\n-1 -1 -1 -1 -1\n-1 -1 -1 -1 -1\n] normalize" ) stats = dup.getStatistics(Measurements.MEAN | Measurements.MIN_MAX | Measurements.STD_DEV) dup.close() blurry = (stats.mean < 18 and stats.stdDev < 22) or stats.max < 250 IJ.setThreshold(imp, lowerBounds[0], 255) IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Watershed", "") if displayImages: imp.show() WaitForUserDialog("Title", "Look at image").show() # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager table = ResultsTable() roim = RoiManager(True) ParticleAnalyzer.setRoiManager(roim) pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.setHideOutputImage(True) pa.analyze(imp) if not displayImages: imp.changes = False imp.close() areas = table.getColumn(0) # This loop goes through the remaining channels for the other markers, by replacing the d0 at the end with its corresponding channel # It will save all the area fractions into a 2d array called areaFractionsArray areaFractionsArray = [] areaMeansArray = [] means = [] totalAreas = [] for chan in channels: v, x = chan # Opens each image and thresholds imp = IJ.openImage(inputDirectory + subFolder + '/' + filename.replace("d0.TIF", "d" + str(x) + ".TIF")) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) ic.convertToGray8() imp.updateAndDraw() stats = imp.getStatistics(Measurements.MEAN) means.append(stats.mean) areaMeans = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.MEAN) areaMeans.append(stats.mean) IJ.setThreshold(imp, lowerBounds[x], 255) IJ.run(imp, "Convert to Mask", "") if displayImages: imp.show() WaitForUserDialog("Title", "Look at image").show() stats = imp.getStatistics(Measurements.AREA_FRACTION) totalAreas.append(stats.areaFraction) # Measures the area fraction of the new image for each ROI from the ROI manager. areaFractions = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA_FRACTION) areaFractions.append(stats.areaFraction) # Saves the results in areaFractionArray areaFractionsArray.append(areaFractions) areaMeansArray.append(sum(areaMeans) / len(areaMeans)) if not displayImages: imp.changes = False imp.close() roim.close() # Figures out what well the image is a part of ind = filename.index("p00_0_") row = filename[ind + 6:ind + 7] column = str(int(filename[ind + 7:ind + 9])) # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column summary = {} # Finds the name of the well from the nameArray 2d array if row in nameArray: if column in nameArray[row]: summary['Name'] = nameArray[row][column] summary['Image'] = filename summary['Directory'] = subDir summary['SubDirectory'] = subsubDir summary['Row'] = row summary['Column'] = column # Adds usual columns summary['size-average'] = 0 summary['#nuclei'] = 0 summary['all-negative'] = 0 summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0 summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0 summary['image-quality'] = blurry # Creates the fieldnames variable needed to create the csv file at the end. fieldnames = [ 'Name', 'Directory', 'SubDirectory', 'Image', 'Row', 'Column', 'size-average', 'image-quality', 'too-big-(>' + str(tooBigThreshold) + ')', 'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei', 'all-negative' ] # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei) for chan in channels: v, x = chan summary[v + "-positive"] = 0 summary[v + "-intensity"] = means[x] summary[v + "-area"] = totalAreas[x] summary[v + "-intensity-in-nuclei"] = areaMeansArray[x] summary[v + "-area-fraction-in-nuclei"] = sum( areaFractionsArray[x]) / len(areaFractionsArray[x]) fieldnames.append(v + "-positive") fieldnames.append(v + "-intensity") fieldnames.append(v + "-area") fieldnames.append(v + "-intensity-in-nuclei") fieldnames.append(v + "-area-fraction-in-nuclei") # Adds the column for colocalization between first and second marker if len(channels) > 2: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive') # Adds the columns for colocalization between all three markers if len(channels) > 3: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive') # Loops through each particle and adds it to each field that it is True for. areaCounter = 0 if not (areas is None): for z, area in enumerate(areas): if not (area is None or summary is None): if area > tooBigThreshold: summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1 elif area < tooSmallThreshold: summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1 else: summary['#nuclei'] += 1 areaCounter += area temp = 0 for y, chan in enumerate(channels): v, x = chan if areaFractionsArray[y][z] > areaFractionThreshold: summary[chan[0] + '-positive'] += 1 if x != 0: temp += 1 if temp == 0: summary['all-negative'] += 1 if len(channels) > 2: if areaFractionsArray[1][z] > areaFractionThreshold: if areaFractionsArray[2][z] > areaFractionThreshold: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] += 1 if len(channels) > 3: if areaFractionsArray[1][z] > areaFractionThreshold: if areaFractionsArray[3][z] > areaFractionThreshold: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[2][z] > areaFractionThreshold: if areaFractionsArray[3][z] > areaFractionThreshold: summary[channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[1][ z] > areaFractionThreshold: summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 # Calculate the average of the particles sizes if float(summary['#nuclei']) > 0: summary['size-average'] = round(areaCounter / summary['#nuclei'], 2) # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image) with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames, extrasaction='ignore', lineterminator='\n') if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1: writer.writeheader() writer.writerow(summary)
def process(subFolder, outputDirectory, filename): imp = IJ.openImage(inputDirectory + subFolder + '/' + filename) imp.show() IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) dup = imp.duplicate() dup_title = dup.getTitle() ic.convertToGray8() imp.updateAndDraw() IJ.run("Threshold...") IJ.setThreshold(218, 245) IJ.run(imp, "Convert to Mask", "") rm = RoiManager() imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE) boundroi = ThresholdToSelection.run(imp) rm.addRoi(boundroi) imp.changes = False imp.close() images = [None] * 5 intensities = [None] * 5 blobsarea = [None] * 5 blobsnuclei = [None] * 5 cells = [None] * 5 bigareas = [None] * 5 IJ.run(dup, "Colour Deconvolution", "vectors=[H DAB]") images[0] = getImage(dup_title + "-(Colour_1)") images[1] = getImage(dup_title + "-(Colour_2)") images[2] = getImage(dup_title + "-(Colour_3)") images[2].close() for chan in channels: v, x = chan imp = images[x] imp.show() for roi in rm.getRoiManager().getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA) intensities[x] = stats.mean bigareas[x] = stats.area rm.runCommand(imp, "Show None") rm.close() # Opens the ch00 image and sets default properties imp = images[0].duplicate() IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html imp.show() setTempCurrentImage(imp) ic = ImageConverter(imp) imp.updateAndDraw() IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur)) imp.updateAndDraw() imp.show() IJ.run("Threshold...") IJ.setThreshold(30, lowerBounds[0]) if displayImages: imp.show() WaitForUserDialog( "Title", "Adjust threshold for nuclei. Current region is: " + region).show() IJ.run(imp, "Convert to Mask", "") # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager table = ResultsTable() roim = RoiManager() pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 5, 9999999999999999, 0.05, 1.0) pa.setHideOutputImage(True) imp = IJ.getImage() # imp.getProcessor().invert() pa.analyze(imp) imp.changes = False imp.close() areas = table.getColumn(0) # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel # It will save all the area fractions into a 2d array called areaFractionsArray areaFractionsArray = [None] * 5 maxThresholds = [] for chan in channels: v, x = chan # Opens each image and thresholds imp = images[x] IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) imp.show() setTempCurrentImage(imp) ic = ImageConverter(imp) ic.convertToGray8() imp.updateAndDraw() rm.runCommand(imp, "Show None") rm.runCommand(imp, "Show All") rm.runCommand(imp, "Show None") imp.show() IJ.selectWindow(imp.getTitle()) IJ.run("Threshold...") IJ.setThreshold(20, lowerBounds[x]) if displayImages: WaitForUserDialog( "Title", "Adjust threshold for " + v + ". Current region is: " + region).show() ip = imp.getProcessor() maxThresholds.append(ip.getMaxThreshold()) IJ.run(imp, "Convert to Mask", "") # Measures the area fraction of the new image for each ROI from the ROI manager. areaFractions = [] for roi in roim.getRoiManager().getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA_FRACTION) areaFractions.append(stats.areaFraction) # Saves the results in areaFractionArray areaFractionsArray[x] = areaFractions roim.close() for chan in channels: v, x = chan imp = images[x] imp.deleteRoi() imp.updateAndDraw() setTempCurrentImage(imp) roim = RoiManager() pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.analyze(imp) blobs = [] cell = [] for roi in roim.getRoiManager().getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA) blobs.append(stats.area) if stats.area > tooSmallThresholdDAB and stats.area < tooBigThresholdDAB: cell.append(stats.area) blobsarea[x] = sum(blobs) blobsnuclei[x] = len(blobs) cells[x] = len(cell) imp.changes = False imp.close() roim.reset() roim.close() # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column summary = {} summary['Image'] = filename summary['Directory'] = subFolder # Adds usual columns summary['size-average'] = 0 summary['#nuclei'] = 0 summary['all-negative'] = 0 summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0 summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0 # Creates the fieldnames variable needed to create the csv file at the end. fieldnames = [ 'Directory', 'Image', 'size-average', 'too-big-(>' + str(tooBigThreshold) + ')', 'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei', 'all-negative' ] for row in info: if row['Animal ID'] == filename.replace('s', '-').replace( 'p', '-').split('-')[0]: for key, value in row.items(): fieldnames.insert(0, key) summary[key] = value # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei) summary["tissue-area"] = bigareas[0] fieldnames.append("tissue-area") for chan in channels: v, x = chan summary[v + "-HEMO-cells"] = 0 fieldnames.append(v + "-HEMO-cells") summary[v + "-intensity"] = intensities[x] fieldnames.append(v + "-intensity") summary[v + "-area"] = blobsarea[x] fieldnames.append(v + "-area") summary[v + "-area/tissue-area"] = blobsarea[x] / bigareas[0] fieldnames.append(v + "-area/tissue-area") summary[v + "-particles"] = blobsnuclei[x] fieldnames.append(v + "-particles") summary[v + "-cells"] = cells[x] fieldnames.append(v + "-cells") summary[v + "-particles/tissue-area"] = blobsnuclei[x] / bigareas[0] fieldnames.append(v + "-particles/tissue-area") fieldnames.append(v + "-HEMO-Cells/tissue-area") # Adds the column for colocalization between first and second marker if len(channels) > 2: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive') # Adds the columns for colocalization between all three markers if len(channels) > 3: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive') # Loops through each particle and adds it to each field that it is True for. areaCounter = 0 for z, area in enumerate(areas): if area > tooBigThreshold: summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1 elif area < tooSmallThreshold: summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1 else: summary['#nuclei'] += 1 areaCounter += area temp = 0 for chan in channels: v, x = chan if areaFractionsArray[x][z] > areaFractionThreshold[0]: summary[chan[0] + '-HEMO-cells'] += 1 if x != 0: temp += 1 if temp == 0: summary['all-negative'] += 1 if len(channels) > 2: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[2][z] > areaFractionThreshold[2]: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] += 1 if len(channels) > 3: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[2][z] > areaFractionThreshold[2]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[1][z] > areaFractionThreshold[1]: summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 # Calculate the average of the particles sizes for chan in channels: v, x = chan summary[v + "-cells/tissue-area"] = summary[v + "-cells"] / bigareas[0] if float(summary['#nuclei']) > 0: summary['size-average'] = round(areaCounter / summary['#nuclei'], 2) if displayImages: fieldnames = ["Directory", "Image"] for chan in channels: v, x = chan summary[v + "-threshold"] = maxThresholds[x] fieldnames.append(v + "-threshold") allMaxThresholds[v + "-" + region].append(maxThresholds[x]) # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image) with open(outputName, 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames, extrasaction='ignore', lineterminator='\n') if os.path.getsize(outputName) < 1: writer.writeheader() writer.writerow(summary)
def runEDM(imp=None): print('=== runEDM()') # # get info from original imp (make a copy below) myInfoDict = simpleFileInfo.getImpInfo(imp, '') print(json.dumps(myInfoDict, indent=4)) filePath = myInfoDict['filePath'] filePathNoExtension = filePath.split('.')[ 0] # assuming folders in path DO NOT have '.' print(' . filePathNoExtension:', filePathNoExtension) impOriginalWindowTitle = imp.getTitle() # # make a copy of imp print(imp) print(' . === making copy of imp') imp = imp.duplicate() imp.show() # # work on the copy image (mean and mask will be performed on this copy 'in place') impWindowTitle = imp.getTitle() impImage = impWindowTitle.split('.')[0] # used by 3D Distance Map print(' . impWindowTitle:', impWindowTitle) print(' impImage:', impImage) # # mean print(' . === mean 3D filter') IJ.run("Mean 3D...", "x=3 y=3 z=2") # # threshold #IJ.setAutoThreshold("Otsu dark") #IJ.setOption("BlackBackground", true); print(' . === Otsu threshold') IJ.run("Convert to Mask", "method=Otsu background=Dark calculate") # invert IJ.run("Invert LUT") # # fill holes print(' . === fill holes') IJ.run("3D Fill Holes") # does not seem to do anything ??? ''' # 3d mean ch1 ... # convert ch1 to mask selectWindow("20200420_distalHEAD__ch1.tif"); setAutoThreshold("Default dark"); //run("Threshold..."); setAutoThreshold("Otsu dark"); setOption("BlackBackground", false); run("Convert to Mask", "method=Otsu background=Dark calculate"); run("Close"); # # run 3d distance map, outputs two windows (EVF, EDT) # # v1, I thought this was working ??? run("3D Distance Map", "map=Both image=20200420_distalHEAD__ch1 mask=20200420_distalHEAD__ch2_mask threshold=1 inverse"); convert output evf to 8-bit output evf has (maybe don't convert to 8-bit???) -1: where there was no mask in ch1 (after 8-bit is 128) 0: where there was a mask in ch2 (after 8-bit is 0) value: distance between point in ch1 mask and nearest point in ch2 mask # # v2, now this seems to be working (neither mask has inverted LUT) # here, 20200420_distalHEAD__ch1-1 is a mask of channel # run("3D Distance Map", "map=Both image=20200420_distalHEAD__ch2_mask mask=20200420_distalHEAD__ch1-1 threshold=1 inverse"); ''' # # 3d distance map (makes EDT window) print(' . === 3d euclidean distance map (EDM) ... please wait') paramStr = 'map=EDT image=' + impImage + ' mask=Same threshold=1 inverse' # inverse? #IJ.run("3D Distance Map", "map=EDT image=20200420_distalHEAD__ch2 mask=Same threshold=1 inverse") IJ.run("3D Distance Map", paramStr) edmImp = WindowManager.getCurrentImage() print(' . edmImp:', edmImp) # convert 32-bit edm to 8-bit ic = ImageConverter(edmImp) # converts channelImp in place scaleConversions = True ic.setDoScaling(scaleConversions) # scales inensities to fill 0...255 ic.convertToGray8() print(' . edmImp:', edmImp) # # save IJ.selectWindow(impWindowTitle) maskPath = filePathNoExtension + '_mask.tif' print(' . === saving maskPath:', maskPath) IJ.saveAs("Tiff", maskPath) IJ.selectWindow("EDT") edmPath = filePathNoExtension + '_edm.tif' print(' . === saving edmPath:', edmPath) IJ.saveAs("Tiff", edmPath) # # set both (mask and edm) changes=false (we save them) imp.changes = False edmImp.changes = False # # output, merge channels into composite # contrast adjust edmp print(' . === contrast adjust edm') edmPath, edmFile = os.path.split(edmPath) IJ.selectWindow(edmFile) IJ.run("Enhance Contrast", "saturated=0.35") # not sure how to calculate auto, 0.35 will be different !!! IJ.run("Apply LUT", "stack") # merge into composite print(' . === merging into composite') #impOriginalWindowTitle was assigned right at start maskWindowTitle = imp.getTitle( ) # (mean, threshold) was done in place on copy edmWindowTitle = edmImp.getTitle() # run("Merge Channels...", "c1=20200420_distalHEAD__ch2.tif c2=20200420_distalHEAD__ch2_mask.tif c3=20200420_distalHEAD__ch2_edm.tif create keep ignore"); paramStr = 'c1=' + impOriginalWindowTitle + ' c2=' + maskWindowTitle + ' c3=' + edmWindowTitle + ' create keep ignore' IJ.run("Merge Channels...", paramStr)
#image = ImagePlus("test", twochannel_stack) #fs = FileSaver(image) #filepath = directory + "/" + filename + "_twochannel.tif" #fs.saveAsTiff(filepath) image_dapi = ImagePlus("dapi stack", dapi_stack) image_dapi.show() image_green = ImagePlus("green stack", green_stack) image_green.show() image = ImagePlus("two channel stack", twochannel_stack) image.show() if auto_thresh: con = ImageConverter(image) con.convertToGray8() IJ.run(image, "Auto Local Threshold", "method=Bernsen radius=15 parameter_1=0 parameter_2=0 white stack") #image = CompositeImage(image_two) #image = IJ.getImage() z_slices = image.getDimensions()[3] / 2 print("order=xyczt(default) channels=2 slices="+ str(z_slices) + " frames=1 display=Color", image.getDimensions()) image_two = HyperStackConverter.toHyperStack(image,2,z_slices,1) image = CompositeImage(image_two) image.show() rt = run_comdet(image) rt.save(directory+"/"+filename+"_results.csv" ) image = IJ.getImage() if auto_cell:
dapi_stack = retrieve_dapi(image, channel) image.close() #image = ImagePlus("test", twochannel_stack) #fs = FileSaver(image) #filepath = directory + "/" + filename + "_twochannel.tif" #fs.saveAsTiff(filepath) image_dapi = ImagePlus("dapi stack", dapi_stack) image_dapi.show() image_green = ImagePlus("green stack", green_stack) image_green.show() image = ImagePlus("two channel stack", twochannel_stack) image.show() if auto_thresh: con = ImageConverter(image) con.convertToGray8() IJ.run( image, "Auto Local Threshold", "method=Bernsen radius=15 parameter_1=0 parameter_2=0 white stack") #image = CompositeImage(image_two) #image = IJ.getImage() z_slices = image.getDimensions()[3] / 2 print( "order=xyczt(default) channels=2 slices=" + str(z_slices) + " frames=1 display=Color", image.getDimensions()) image_two = HyperStackConverter.toHyperStack(image, 2, z_slices, 1) image = CompositeImage(image_two) image.show() rt = run_comdet(image)
frame_stack = channel_splitter.getChannel(frame, channel) # ImageStack frame = ImagePlus("Channel " + str(channel), frame_stack) # Map signal to entire 16-bit range contrast_enhancer.stretchHistogram(frame, 0.01) processor = frame.getProcessor() if(processor.getBitDepth() == 32): processor.setMinAndMax(0, 1.0) else: processor.setMinAndMax(0, processor.maxValue()) frame = ImagePlus("Frame " + str(frame_i), processor) # Convert to 8-bit, grayscale converter = ImageConverter(frame) converter.convertToGray8() # Perform median filtering processor = frame.getProcessor() filters = RankFilters() filters.setup("median", frame) filters.rank(processor, filter_window, filters.MEDIAN) # Perform gamma correction processor.gamma(gamma) frame = ImagePlus("Frame " + str(frame_i), processor) # Rolling ball background subtraction processor = frame.getProcessor()
def analyse(cwd, user, imagefolder, stats, experiments, multi, Rloc2, subfoldernames, names, statsfolderPath, cwdR): """ Main image analysis Gets user image analysis settings from the .csv file. If multiple experiments have been selected by the user (multi) each subfolder will be looped through. A nested loop will then interate through each .tif image and analyse. A .csv file will be produced for each folder analysed with the name of each image and its % neurite density and % myelination. A summary csv file will also be produced with the average % neurite density and % myelination for each subfolder. If statistical analysis has been selected (stats) then MyelinJ's Rscript will be run via the command line. If multple experiments is not selected then all of the images within the selected folder will be analysed together and no summary .csv will be produced. Independ of the analysis settings defined, a processed myelin channel image and a processed neurite channel image will be saved. The images can be any number of subdirectories (folders within folders). Parameters ---------- cwd : string Path for current working directory (location of MyelinJ folder in Fiji). user: string User name imagefolder: string Path to .tiff image folder(s) defined by user. stats: boolean Perform statistical analysing using R? experiments: 2D list of strings list of all the subfolders (experiments) that are in each experimental condition. multi: boolean Analyse multiple experiments? Rloc2: string file path to Rscript location subfoldernames: string name of each subfolder which denoates each individual experiment, if multple experiments are being analysed. names: array array of textfields for each experimental condition defined by user. User will enter the name of each experimental condition. statsfolderPath: string file path to the create statsfolder. cwdR: string file path to MyelinJstats.R """ # read settings from the user name CSV bg = False readsettings = [] imagenames = [] neuritedensity = [] myelinoverlay = [] myelinaverage2 = [] neuriteaverage2 = [] root = cwd filename = user fullpath = os.path.join(root, filename) f = open(fullpath, 'rb') readCSV = csv.reader(f) for row in readCSV: readsettings.append(row[0]) readsettings.append(row[1]) readsettings.append(row[2]) readsettings.append(row[3]) readsettings.append(row[4]) readsettings.append(row[5]) readsettings.append(row[6]) f.close() i = 0 for i in range(len(subfoldernames)): # if multiple experimental conditions has been selected each folder is treated as a # separate experiment and looped through separately otherwise all folders will be # treated as one experiment this only works for sub directories within the main folder. # Further folders will be ignored (each image can be in its own folder for example) if multi is True: # if multiple experiments are being analysed the file path is changed to the # current subfolder settings2 = os.path.join(imagefolder, subfoldernames[i]) if "Windows" in OS: settings2 = settings2 + "\\" elif "Mac" in OS: settings2 = settings2 + "/" else: settings2 = imagefolder # loop through all .tiff files in location for root, dirs, files in os.walk(settings2): for name in files: if name.endswith((".tif")): imagenames.append(os.path.join(name)) # open .tiff image, split channels and # convert to 8bit grey scale. imp = IJ.openImage(os.path.join(root, name)) g = int(readsettings[4]) r = int(readsettings[5]) imp = ChannelSplitter.split(imp) green = imp[g] red = imp[r] conv = ImageConverter(red) conv.convertToGray8() conv = ImageConverter(green) conv.convertToGray8() # thresholding to select cell bodies green2 = green.duplicate() if (readsettings[0] != "0") or (readsettings[1] != "0"): bg = True IJ.setAutoThreshold(green2, readsettings[2]) IJ.setRawThreshold(green2, int(readsettings[0]), int(readsettings[1]), None) Prefs.blackBackground = True IJ.run(green2, "Convert to Mask", "") IJ.run(green2, "Invert LUT", "") if readsettings[7] != "0": IJ.run(green2, "Make Binary", "") IJ.run( green2, "Remove Outliers...", "radius=" + readsettings[7] + " threshold=50 which=Dark") # CLAHE and background subtraction if readsettings[8] == "True": mpicbg.ij.clahe.Flat.getFastInstance().run( green, 127, 256, 3, None, False) if readsettings[9] == "True": calc = ImageCalculator() green = calc.run("Subtract create", green, red) elif readsettings[6] == "True": IJ.run(green, "Subtract Background...", "rolling=50") if readsettings[10] != "0": IJ.run(green, "Subtract...", "value=" + readsettings[10]) # run frangi vesselness pixelwidth = str(green.getCalibration().pixelWidth) IJ.run( green, "Frangi Vesselness (imglib, experimental)", "number=1 minimum=" + pixelwidth + " maximum=" + pixelwidth) green = IJ.getImage() # convert frangi vesselness image to 8bit grey scale conv = ImageConverter(green) conv.convertToGray8() IJ.run(green, "Convert to Mask", "") # remove cell bodies if bg is True: green = ImageCalculator().run("Subtract create", green, green2) # run grey scale morphology filter from MorpholibJ if readsettings[11] != "0": green = green.getProcessor() algo = BoxDiagonalOpeningQueue() algo.setConnectivity(4) result = algo.process(green, int(readsettings[11])) green = ImagePlus("result", result) IJ.run(green, "Invert LUT", "") if len(readsettings) > 14: # sparse neurite image analysis if readsettings[15] == "True": IJ.run( red, "Enhance Local Contrast (CLAHE)", "blocksize=127 histogram=256 maximum=3 mask=*None* fast_(less_accurate)" ) if readsettings[14] == "True": IJ.run(red, "Subtract Background...", "rolling=50") IJ.setAutoThreshold(red, readsettings[16]) IJ.setRawThreshold(red, int(readsettings[17]), int(readsettings[18]), None) IJ.run(red, "Convert to Mask", "") IJ.run(red, "Invert LUT", "") else: # dense neurite image analysis IJ.run( red, "Normalize Local Contrast", "block_radius_x=40 block_radius_y=40 standard_deviations=" + readsettings[12] + " center stretch") IJ.run(red, "Auto Threshold", "method=Default white") IJ.run(red, "Invert LUT", "") if readsettings[3] == "True": IJ.run(red, "Despeckle", "") IJ.saveAs(red, "Jpeg", settings2 + name + "neurites") # get number of neurite pixels # get number of neurite pixels statsneurite = red.getProcessor() statsneurite = statsneurite.getHistogram() neuritedensity.append(statsneurite[255]) IJ.saveAs(green, "Jpeg", settings2 + name + "myelinFinal") # get number of myelin pixels statsmyelin = green.getProcessor() statsmyelin = statsmyelin.getHistogram() myelinoverlay.append(statsmyelin[255]) closeallimages() # get pixel total of image whitepixels = (statsneurite[0]) blackpixels = (statsneurite[255]) totalpixels = whitepixels + blackpixels totalpixels = [totalpixels] * len(neuritedensity) # for each image calculate % myelination as number of myelin pixels # divided by the number of neurite pixels * 100 myelinoverlay = [ x1 / x2 * 100 for (x1, x2) in zip(myelinoverlay, neuritedensity) ] myelinaverage = sum(myelinoverlay) / len(myelinoverlay) myelinaverage2.append(myelinaverage) # for each image calculate % neurite density as neurite pixels divided # by the total number of pixels in the image * 100. neuritedensity = [ x1 / x2 * 100 for (x1, x2) in zip(neuritedensity, totalpixels) ] neuriteaverage = sum(neuritedensity) / len(neuritedensity) neuriteaverage2.append(neuriteaverage) name = "Image names" green = "% myelination" red = "% neurite density" imagenames = [name] + imagenames neuritedensity = [red] + neuritedensity myelinoverlay = [green] + myelinoverlay result = [] result.append(imagenames) result.append(neuritedensity) result.append(myelinoverlay) root = settings2 filename = "Results.csv" fullpath = os.path.join(root, filename) f = open(fullpath, 'wb') writer = csv.writer(f) for d in range(len(result)): row = [result[d]] writer.writerows(row) f.close() # must be reset to 0 for each iteration. y = 0 r = 0 # if statistical analysis is being performed the results .csv file # is also saved to a subfolder within the statistical analysis folder # which denotes the experimental condition the results belong to. if stats is True: # nested for loop to identify correct experimental condition # for the current subfolder being analysed. for y in range(0, len(experiments)): for r in range(0, len(experiments[0])): if experiments[y][r] == subfoldernames[i]: if "Windows" in OS: root = imagefolder + "\\statistical analysis\\" + names[ y].getText() elif "Mac" in OS: root = imagefolder + "/statistical analysis/" + names[ y].getText() filename = subfoldernames[i] + ".csv" fullpath = os.path.join(root, filename) f = open(fullpath, 'wb') writer = csv.writer(f) for e in range(len(result)): row = [result[e]] writer.writerows(row) f.close() break cwd2 = os.getcwd() for files in os.listdir(cwd2): if files.endswith(".csv"): os.remove(os.path.join(cwd2, files)) imagenames = [] myelinoverlay = [] neuritedensity = [] # create .csv summary sheet with average % neurite density # and average % myelination for each subfolder (experiment). if multi is True: name = "Folder name" imagenames = [name] + subfoldernames neuritedensity = [red] + neuriteaverage2 myelinoverlay = [green] + myelinaverage2 result = [] result.append(imagenames) result.append(neuritedensity) result.append(myelinoverlay) if "Windows" in OS: root = imagefolder + "\\" elif "Mac" in OS: root = imagefolder + "/" filename = "Result-Summary.csv" fullpath = os.path.join(root, filename) f = open(fullpath, 'wb') writer = csv.writer(f) for p in range(len(result)): row = [result[p]] writer.writerows(row) f.close() imagenames = [] myelinoverlay = [] neuritedensity = [] # Run Rscript for statistical analysis via the command line if stats is True: cmd = Rloc2 + " " + cwdR + " " + statsfolderPath Runtime.getRuntime().exec(cmd) Finished()
def process(subFolder, outputDirectory, filename): roim = RoiManager() roim.close() imp = IJ.openImage(inputDirectory + subFolder + '/' + filename.replace("_ch00.tif", ".tif")) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) ic.convertToGray8() imp.updateAndDraw() IJ.setThreshold(imp, 2, 255) IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Dark") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Bright") imp.getProcessor().invert() imp.changes = False imp.close() x_amount = 10 y_amount = 10 l = 0 j = 0 while l < x_amount: k = 0 while k < y_amount: copy = IJ.openImage(inputDirectory + subFolder + '/' + filename.replace("_ch00.tif", ".tif")) Xposition = (int)(round((imp.width / x_amount) * l)) Yposition = (int)(round((imp.width / y_amount) * k)) Width = (int)(round(imp.width / x_amount)) Height = (int)(round(imp.height / y_amount)) roi = Roi(Xposition, Yposition, Width, Height) copy.setRoi(roi) IJ.run(copy, "Crop", "") FileSaver(copy).saveAsTiff(outputDirectory + '/' + filename + "_crop_" + str(j) + ".tif") copy.changes = False copy.close() for chan in channels: v, x = chan image = IJ.openImage(inputDirectory + subFolder + '/' + filename.replace("ch00.tif", "ch0" + str(x) + ".tif")) roi = Roi(Xposition, Yposition, Width, Height) image.setRoi(roi) IJ.run(image, "Crop", "") FileSaver(image).saveAsTiff(outputDirectory + '/' + filename + "_crop_" + str(j) + "_ch0" + str(x) + ".tif") image.changes = False image.close() roim.close() k = k + 1 j = j + 1 l = l + 1 imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE) boundroi = ThresholdToSelection.run(imp) rm = RoiManager() rm.addRoi(boundroi) images = [None] * 5 intensities = [None] * 5 blobsarea = [None] * 5 blobsnuclei = [None] * 5 areas = [None] * 5 for chan in channels: v, x = chan images[x] = IJ.openImage(inputDirectory + subFolder + '/' + filename.replace("ch00.tif", "ch0" + str(x) + ".tif")) imp = images[x] for roi in rm.getRoiManager().getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA) intensities[x] = stats.mean areas[x] = stats.area rm.close() # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column summary = {} summary['Image'] = filename summary['Directory'] = subFolder # Creates the fieldnames variable needed to create the csv file at the end. fieldnames = ['Name', 'Directory', 'Image'] # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei) summary["organoid-area"] = areas[x] fieldnames.append("organoid-area") for chan in channels: v, x = chan summary[v + "-intensity"] = intensities[x] fieldnames.append(v + "-intensity") # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image) with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames, extrasaction='ignore', lineterminator='\n') if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1: writer.writeheader() writer.writerow(summary)
for subfolder in subfolders: #Opens each image for filename in os.listdir(inputDirectory + subfolder): imp = IJ.openImage(inputDirectory + subfolder + '/' + filename) if imp: # 10X objective IJ.run(imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=" +str(pix_width)+ " pixel_height=" +str(pix_height)+" voxel_depth=25400.0508001") # Change to a GUI option later? # Threshold, fills hole and watershed ic = ImageConverter(imp); ic.convertToGray8(); IJ.setAutoThreshold(imp, "Default dark") if thresholdMode: imp.show() IJ.run("Threshold...") WaitForUserDialog("Title", "Adjust threshold").show() IJ.run(imp, "Convert to Mask", "") if not inverted: IJ.run(imp, "Invert", "") IJ.run(imp, "Fill Holes", "") if watershedMode: IJ.run(imp, "Watershed", "")
def Overlayer(org_size, dirs): """ Overlays ROIs with appropriate color, saves to .tif and animates aligned images to .gif """ # Get colors. Colors, Colors_old = colorlist() # Get ROImanager. rm = RoiManager().getInstance() rois = rm.getCount() # Overlays ROI on aligned images, converts to 8-bit (for gif). for root, directories, filenames in os.walk(dirs["Composites_Aligned"]): for filename in filenames: imp = IJ.openImage(os.path.join(root, filename)) converter = ImageConverter(imp) converter.setDoScaling(True) converter.convertToGray8() # Lookup table and local contrast enhancement for vizualisation. IJ.run(imp, "Rainbow RGB", "") IJ.run(imp, "Enhance Local Contrast (CLAHE)", "blocksize=127 histogram=256 maximum=3 mask=*None*") for roi in range(rois): roi_obj = rm.getRoi(roi) roi_obj.setStrokeWidth(2) if roi < 19: roi_obj.setStrokeColor(Color(*Colors[roi][0:3])) else: roi_obj.setStrokeColor(eval(Colors_old[roi])) rm.moveRoisToOverlay(imp) IJ.saveAs(imp, "Tiff", os.path.join(dirs["Overlays"], filename)) # Opens overlaid images, saves as tiff stack. overlay_stack = IJ.run("Image Sequence...", "open="+dirs["Overlays"]+ " number=3040 starting=0 increment=1 scale=300 file=.tif sort") # Takes care of spaces in titles. tiftitle = Title.replace(" ", "_") tiftitle = tiftitle.replace(".", "_") # Gets dimensions for scalebar. imp = WindowManager.getImage("Overlays") dimensions = imp.getDimensions() size = dimensions[0] + dimensions[1] microns = org_size / size # Sets scale and writes scale-bar, flattens overlays. IJ.run(imp, "Set Scale...", "distance=1 known=" +str(microns)+" pixel=1 unit=micron") IJ.run(imp, "Scale Bar...", "width=10 height=4 font=14 color=Yellow background=None location=[Lower Right] bold overlay") IJ.run(imp, "Flatten", "stack") IJ.saveAs(imp, "Tiff", os.path.join(dirs["Gifs"], tiftitle)) # Animates tiff stack from directoy. for root, directories, filenames in os.walk(dirs["Gifs"]): for filename in filenames: if tiftitle in filename and filename.endswith(".tif"): # set=xx parameter controls gif speed. # for additional parameters run with macro recorder. try: print "Animating gif..." imp = WindowManager.getImage(tiftitle + ".tif") gif = IJ.run("Animated Gif ... ", "set=200 number=0 filename=" + os.path.join(dirs["Gifs"], tiftitle + ".gif")) except Exception, e: print str(e) print "gif animated."
def process(subFolder, outputDirectory, filename): imp = IJ.openImage(inputDirectory + subFolder + '/' + rreplace(filename, "_ch00.tif", ".tif")) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) ic.convertToGray8() IJ.setThreshold(imp, 2, 255) IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Dark") IJ.run(imp, "Remove Outliers...", "radius=5" + " threshold=50" + " which=Bright") imp.getProcessor().invert() rm = RoiManager(True) imp.getProcessor().setThreshold(0, 0, ImageProcessor.NO_LUT_UPDATE) boundroi = ThresholdToSelection.run(imp) rm.addRoi(boundroi) if not displayImages: imp.changes = False imp.close() images = [None] * 5 intensities = [None] * 5 blobsarea = [None] * 5 blobsnuclei = [None] * 5 bigAreas = [None] * 5 for chan in channels: v, x = chan images[x] = IJ.openImage(inputDirectory + subFolder + '/' + rreplace(filename, "_ch00.tif", "_ch0" + str(x) + ".tif")) imp = images[x] for roi in rm.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.MEAN | Measurements.AREA) intensities[x] = stats.mean bigAreas[x] = stats.area rm.close() # Opens the ch00 image and sets default properties imp = IJ.openImage(inputDirectory + subFolder + '/' + filename) IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) # Sets the threshold and watersheds. for more details on image processing, see https://imagej.nih.gov/ij/developer/api/ij/process/ImageProcessor.html ic = ImageConverter(imp) ic.convertToGray8() IJ.run(imp, "Remove Outliers...", "radius=2" + " threshold=50" + " which=Dark") IJ.run(imp, "Gaussian Blur...", "sigma=" + str(blur)) IJ.setThreshold(imp, lowerBounds[0], 255) if displayImages: imp.show() IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Watershed", "") if not displayImages: imp.changes = False imp.close() # Counts and measures the area of particles and adds them to a table called areas. Also adds them to the ROI manager table = ResultsTable() roim = RoiManager(True) ParticleAnalyzer.setRoiManager(roim) pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.setHideOutputImage(True) #imp = impM # imp.getProcessor().invert() pa.analyze(imp) areas = table.getColumn(0) # This loop goes through the remaining channels for the other markers, by replacing the ch00 at the end with its corresponding channel # It will save all the area fractions into a 2d array called areaFractionsArray areaFractionsArray = [None] * 5 for chan in channels: v, x = chan # Opens each image and thresholds imp = images[x] IJ.run( imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=0.8777017 pixel_height=0.8777017 voxel_depth=25400.0508001" ) ic = ImageConverter(imp) ic.convertToGray8() IJ.setThreshold(imp, lowerBounds[x], 255) if displayImages: imp.show() WaitForUserDialog("Title", "Adjust Threshold for Marker " + v).show() IJ.run(imp, "Convert to Mask", "") # Measures the area fraction of the new image for each ROI from the ROI manager. areaFractions = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA_FRACTION) areaFractions.append(stats.areaFraction) # Saves the results in areaFractionArray areaFractionsArray[x] = areaFractions roim.close() for chan in channels: v, x = chan imp = images[x] imp.deleteRoi() roim = RoiManager(True) ParticleAnalyzer.setRoiManager(roim) pa = ParticleAnalyzer(ParticleAnalyzer.ADD_TO_MANAGER, Measurements.AREA, table, 15, 9999999999999999, 0.2, 1.0) pa.analyze(imp) blobs = [] for roi in roim.getRoisAsArray(): imp.setRoi(roi) stats = imp.getStatistics(Measurements.AREA) blobs.append(stats.area) blobsarea[x] = sum(blobs) blobsnuclei[x] = len(blobs) if not displayImages: imp.changes = False imp.close() roim.reset() roim.close() # Creates the summary dictionary which will correspond to a single row in the output csv, with each key being a column summary = {} summary['Image'] = filename summary['Directory'] = subFolder # Adds usual columns summary['size-average'] = 0 summary['#nuclei'] = 0 summary['all-negative'] = 0 summary['too-big-(>' + str(tooBigThreshold) + ')'] = 0 summary['too-small-(<' + str(tooSmallThreshold) + ')'] = 0 # Creates the fieldnames variable needed to create the csv file at the end. fieldnames = [ 'Name', 'Directory', 'Image', 'size-average', 'too-big-(>' + str(tooBigThreshold) + ')', 'too-small-(<' + str(tooSmallThreshold) + ')', '#nuclei', 'all-negative' ] # Adds the columns for each individual marker (ignoring Dapi since it was used to count nuclei) summary["organoid-area"] = bigAreas[x] fieldnames.append("organoid-area") for chan in channels: v, x = chan summary[v + "-positive"] = 0 fieldnames.append(v + "-positive") summary[v + "-intensity"] = intensities[x] fieldnames.append(v + "-intensity") summary[v + "-blobsarea"] = blobsarea[x] fieldnames.append(v + "-blobsarea") summary[v + "-blobsnuclei"] = blobsnuclei[x] fieldnames.append(v + "-blobsnuclei") # Adds the column for colocalization between first and second marker if len(channels) > 2: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-positive') # Adds the columns for colocalization between all three markers if len(channels) > 3: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] = 0 fieldnames.append(channels[1][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[2][0] + '-' + channels[3][0] + '-positive') fieldnames.append(channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive') # Loops through each particle and adds it to each field that it is True for. areaCounter = 0 for z, area in enumerate(areas): log.write(str(area)) log.write("\n") if area > tooBigThreshold: summary['too-big-(>' + str(tooBigThreshold) + ')'] += 1 elif area < tooSmallThreshold: summary['too-small-(<' + str(tooSmallThreshold) + ')'] += 1 else: summary['#nuclei'] += 1 areaCounter += area temp = 0 for chan in channels: v, x = chan if areaFractionsArray[x][z] > areaFractionThreshold[ 0]: #theres an error here im not sure why. i remember fixing it before summary[chan[0] + '-positive'] += 1 if x != 0: temp += 1 if temp == 0: summary['all-negative'] += 1 if len(channels) > 2: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[2][z] > areaFractionThreshold[2]: summary[channels[1][0] + '-' + channels[2][0] + '-positive'] += 1 if len(channels) > 3: if areaFractionsArray[1][z] > areaFractionThreshold[1]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[1][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[2][z] > areaFractionThreshold[2]: if areaFractionsArray[3][z] > areaFractionThreshold[3]: summary[channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 if areaFractionsArray[1][z] > areaFractionThreshold[1]: summary[channels[1][0] + '-' + channels[2][0] + '-' + channels[3][0] + '-positive'] += 1 # Calculate the average of the particles sizes if float(summary['#nuclei']) > 0: summary['size-average'] = round(areaCounter / summary['#nuclei'], 2) # Opens and appends one line on the final csv file for the subfolder (remember that this is still inside the loop that goes through each image) with open(outputDirectory + "/" + outputName + ".csv", 'a') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=fieldnames, extrasaction='ignore', lineterminator='\n') if os.path.getsize(outputDirectory + "/" + outputName + ".csv") < 1: writer.writeheader() writer.writerow(summary)
for filename in os.listdir(inputDirectory + subfolder): imp = IJ.openImage(inputDirectory + subfolder + '/' + filename) if imp: # 10X objective IJ.run(imp, "Properties...", "channels=1 slices=1 frames=1 unit=um pixel_width=" + str(pix_width) + " pixel_height=" + str(pix_height) + " voxel_depth=25400.0508001" ) # Change to a GUI option later? # Threshold, fills hole and watershed ic = ImageConverter(imp) ic.convertToGray8() IJ.setAutoThreshold(imp, "Default dark") if thresholdMode: imp.show() IJ.run("Threshold...") WaitForUserDialog("Title", "Adjust threshold").show() IJ.run(imp, "Convert to Mask", "") IJ.run(imp, "Invert", "") IJ.run(imp, "Fill Holes", "") if not thresholdMode: IJ.run(imp, "Watershed", "") #Measure particles table = ResultsTable()