###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_velocity_config.json') as json_data_file: il_config = json.load(json_data_file) file_path = il_config['file_path'] + il_config['experiment_name'] il_config['model'] = DecisionTreeClassifier(max_depth=4) #Trainer class trainer = Trainer(fluids_config, il_config) #Plotter class plotter = Plotter(file_path) stats = [] for i in range(il_config['num_iters']): #Collect demonstrations trainer.collect_supervisor_rollouts() #update model trainer.train_model() #Evaluate Policy stats.append(trainer.get_stats()) #Save plots plotter.save_plots(stats)
###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_covariate_config.json') as json_data_file: il_config = json.load(json_data_file) fluids_config['environment']['visualize'] = False ###### SELECT PARAMETER ################# il_config['time_horizon'] = 5 il_config['num_sup_rollouts'] = 4 il_config['experiment_name'] = il_config[ 'trial_name'] + 'save_unit_test_' + str(rand.uniform()) trainer = Trainer(fluids_config, il_config) trainer.collect_supervisor_rollouts() trainer.train_model() train_sup = trainer.il_learn.get_train_error() loss_sup, _ = trainer.il_learn.get_test_error() assert (train_sup >= 0.0) assert (loss_sup >= 0.0)
import json import glob from il_fluids.core import Trainer import os.path ###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_covariate_config.json') as json_data_file: il_config = json.load(json_data_file) fluids_config['environment']['visualize'] = True ###### SELECT PARAMETER ################# il_config['time_horizon'] = 5 il_config['num_sup_rollouts'] = 4 il_config['num_iters'] = 1 il_config['experiment_name'] = il_config[ 'trial_name'] + 'save_unit_test_' + str(rand.uniform()) file_path = il_config['file_path'] + il_config['experiment_name'] trainer = Trainer(fluids_config, il_config) trainer.train_robot() assert (os.path.isfile(file_path + '/plots/reward.png'))
import os.path ###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_covariate_config.json') as json_data_file: il_config = json.load(json_data_file) fluids_config['environment']['visualize'] = False ###### SELECT PARAMETER ################# il_config['time_horizon'] = 5 il_config['num_sup_rollouts'] = 4 il_config['num_iters'] = 1 il_config['experiment_name'] = il_config[ 'trial_name'] + 'save_unit_test_' + str(rand.uniform()) file_path = il_config['file_path'] + il_config['experiment_name'] trainer = Trainer(fluids_config, il_config) trainer.set_tracker(BaseTracker) trainer.train_robot() assert (os.path.isfile(file_path + '/tracker/initial_state.npy'))
import cProfile import time import numpy as np import numpy.linalg as LA import json from il_fluids.core import Trainer from sklearn.tree import DecisionTreeClassifier from il_fluids.data_protocols import * ###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_covariate_config.json') as json_data_file: il_config = json.load(json_data_file) fluids_config['environment']['visualize'] = False il_config['time_horizon'] = 5 ###### SELECT MODEL ################# trainer = Trainer(fluids_config, il_config) rollout = trainer.rollout_supervisor() assert (len(rollout) == 5)
with open('configs/il_covariate_two_config.json') as json_data_file: il_config = json.load(json_data_file) ###### SELECT MODEL ################# il_config['model'] = DecisionTreeClassifier(max_depth=10) fluids_config['environment']['visualize'] = True # ###RUN BEHAVIOR CLONING############ # il_config['experiment_name'] = il_config['trial_name'] + "_30_noise_injection" # trainer = Trainer(fluids_config,il_config) # dcp = DART() # dcp.noise = 0.3 # trainer.set_data_protocol(dcp) # trainer.train_robot() il_config['experiment_name'] = il_config['trial_name'] + "_10_noise_neural" trainer = Trainer(fluids_config, il_config) trainer.set_data_protocol(DART()) trainer.train_robot() # il_config['experiment_name'] = il_config['trial_name'] + "_bc" # trainer = Trainer(fluids_config,il_config) # trainer.train_robot()
import gym import gym_urbandriving as uds import cProfile import time import numpy as np import numpy.linalg as LA import json from il_fluids.core import Trainer from il_fluids.core import Learner from il_fluids.core import Plotter ###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_velocity_config.json') as json_data_file: il_config = json.load(json_data_file) file_path = il_config['file_path'] + il_config['experiment_name'] #Trainer class trainer = Trainer(fluids_config, il_config) trainer.train_model() trainer.get_stats()
import json import glob from il_fluids.core import Trainer ###A script to test behavior cloning #Config for FLUIDS simulator with open('configs/fluids_config.json') as json_data_file: fluids_config = json.load(json_data_file) #Config for Imitation Learning Experiment with open('configs/il_covariate_config.json') as json_data_file: il_config = json.load(json_data_file) fluids_config['environment']['visualize'] = False ###### SELECT PARAMETER ################# il_config['time_horizon'] = 5 il_config['num_sup_rollouts'] = 4 il_config['experiment_name'] = il_config[ 'trial_name'] + 'save_unit_test_' + str(rand.uniform()) trainer = Trainer(fluids_config, il_config) trainer.collect_supervisor_rollouts() trainer.train_model() loss_robot, reward, _ = trainer.evaluate_policy() assert (loss_robot >= 0.0)