def __init__(self, operator, projectFileGroupName): self.VERSION = 1 self._serialClassifierSlot = SerialClassifierSlot( operator.Classifier, operator.classifier_cache, name="ClassifierForests") slots = [ SerialListSlot(operator.LabelNames), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialPickleableSlot(operator.Bookmarks, self.VERSION), BackwardsCompatibleLabelSerialBlockSlot( operator.LabelImages, operator.LabelInputs, operator.NonzeroLabelBlocks, name="LabelSets", subname="labels{:03d}", selfdepends=False, shrink_to_bb=True, ), SerialClassifierFactorySlot(operator.ClassifierFactory), self._serialClassifierSlot, ] super(PixelClassificationSerializer, self).__init__(projectFileGroupName, slots, operator)
def __init__(self, operator, projectFileGroupName): self.predictionSlot = SerialPredictionSlot( operator.PredictionProbabilities, operator, name='Predictions', subname='predictions{:04d}', ) slots = [ SerialListSlot( operator.LabelNames, ), SerialListSlot( operator.LabelColors, transform=lambda x: tuple(x.flat), ), SerialListSlot( operator.PmapColors, transform=lambda x: tuple(x.flat), ), SerialBlockSlot( operator.LabelImages, operator.LabelInputs, operator.NonzeroLabelBlocks, name='LabelSets', subname='labels{:0}', selfdepends=False, ), self.predictionSlot, SerialBoxSlot( operator.opTrain.BoxConstraintRois, operator.opTrain, name='Rois', subname='rois{:04d}', ), SerialBoxSlot( operator.opTrain.BoxConstraintValues, operator.opTrain, name='Values', subname='values{:04d}', ), SerialSlot( operator.opTrain.Sigma, name='Sigma', ), SerialBoxSlot( operator.boxViewer.rois, operator.boxViewer, name='ViewRois', subname='viewrois{:04d}', ), SerialCountingSlot( operator.Classifier, operator.classifier_cache, name='CountingWrappers', ), ] super(CountingSerializer, self).__init__(projectFileGroupName, slots=slots) self.predictionSlot.progressSignal.subscribe(self.progressSignal)
def __init__(self, operator, projectFileGroupName): super(NanshePreprocessingSerializer, self).__init__( projectFileGroupName, slots=[ SerialSlot(operator.ToRemoveZeroedLines, selfdepends=True), SerialListSlot(operator.ErosionShape, selfdepends=True), SerialListSlot(operator.DilationShape, selfdepends=True), SerialSlot(operator.ToExtractF0, selfdepends=True), SerialSlot(operator.HalfWindowSize, selfdepends=True), SerialSlot(operator.WhichQuantile, selfdepends=True), SerialSlot(operator.TemporalSmoothingGaussianFilterStdev, selfdepends=True), SerialSlot(operator.SpatialSmoothingGaussianFilterStdev, selfdepends=True), SerialSlot(operator.TemporalSmoothingGaussianFilterWindowSize, selfdepends=True), SerialSlot(operator.SpatialSmoothingGaussianFilterWindowSize, selfdepends=True), SerialSlot(operator.BiasEnabled, selfdepends=True), SerialSlot(operator.Bias, selfdepends=True), SerialSlot(operator.ToWaveletTransform, selfdepends=True), SerialListSlot(operator.Scale, selfdepends=True), SerialBlockSlot(operator.CacheOutput, operator.CacheInput, operator.CleanBlocks, selfdepends=True) ])
def _serialize(self, group, name, multislot): #create subgroups, one for every imagelane BoxDir = group.create_group(self.name) self.deserialize(group) for i, slot in enumerate(multislot): g = BoxDir.create_group(self.subname.format(i)) s = SerialListSlot(slot) s.serialize(g)
def __init__(self, operator, groupName): self.TestSerialSlot = SerialSlot(operator.TestSlot) self.TestMultiSerialSlot = SerialSlot(operator.TestMultiSlot) self.TestSerialListSlot = SerialListSlot(operator.TestListSlot, selfdepends=True) slots = (self.TestSerialSlot, self.TestMultiSerialSlot, self.TestSerialListSlot) super(OpMockSerializer, self).__init__(groupName, slots)
def __init__(self, operator, projectFileGroupName): slots = [SerialListSlot(operator.InputChannelIndexes, selfdepends=True), SerialSlot(operator.WatershedPadding, selfdepends=True), SerialSlot(operator.CacheBlockShape, selfdepends=True), SerialSlot(operator.SeedThresholdValue, selfdepends=True), SerialSlot(operator.MinSeedSize, selfdepends=True) ] super(VigraWatershedViewerSerializer, self).__init__(projectFileGroupName, slots=slots)
def __init__(self, operator, projectFileGroupName): self._serialClassifierSlot = SerialClassifierSlot(operator.Classifier, operator.classifier_cache, name="ClassifierForests") slots = [SerialListSlot(operator.LabelNames, transform=str), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialBlockSlot(operator.LabelImages, operator.LabelInputs, operator.NonzeroLabelBlocks, name='LabelSets', subname='labels{:03d}', selfdepends=False, shrink_to_bb=True), SerialClassifierFactorySlot(operator.ClassifierFactory), self._serialClassifierSlot ] super(PixelClassificationSerializer, self).__init__(projectFileGroupName, slots, operator)
def __init__(self, operator, projectFileGroupName): self.VERSION = 1 # Make sure to bump the version in case you make any changes in the serialization self._serialClassifierSlot = SerialClassifierSlot( operator.Classifier, operator.classifier_cache, name="ClassifierForests") slots = [ SerialListSlot(operator.LabelNames), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialPickleableSlot(operator.Bookmarks, self.VERSION), SerialBlockSlot( operator.LabelImages, operator.LabelInputs, operator.NonzeroLabelBlocks, name="LabelSets", subname="labels{:03d}", selfdepends=False, shrink_to_bb=True, ), SerialClassifierFactorySlot(operator.ClassifierFactory), self._serialClassifierSlot, SerialBlockSlot( operator.opSupervoxelFeaturesAndLabels.SupervoxelFeatures, operator.opSupervoxelFeaturesAndLabels. CacheSupervoxelFeaturesInput, operator.opSupervoxelFeaturesAndLabels. SupervoxelFeaturesCleanBlocks, ), SerialBlockSlot( operator.opSupervoxelFeaturesAndLabels.SupervoxelLabels, operator.opSupervoxelFeaturesAndLabels. CacheSupervoxelLabelsInput, operator.opSupervoxelFeaturesAndLabels. SupervoxelLabelsCleanBlocks, ), ] super(VoxelSegmentationSerializer, self).__init__(projectFileGroupName, slots, operator)
def __init__(self, topGroupName, operator): serialSlots = [ SerialDictSlot(operator.SelectedFeatures, transform=str), SerialListSlot(operator.LabelNames, transform=str), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialDictSlot(operator.LabelInputs, transform=int), SerialClassifierSlot(operator.Classifier, operator.classifier_cache, name="ClassifierForests", subname="Forest{:04d}"), SerialDictSlot(operator.CachedProbabilities, operator.InputProbabilities, transform=int), ] super(ObjectClassificationSerializer, self ).__init__(topGroupName, slots=serialSlots, operator=operator)
def __init__(self, topLevelOperator, projectFileGroupName): self.VERSION = 1 slots = [ SerialListSlot(topLevelOperator.LabelNames), SerialListSlot(topLevelOperator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(topLevelOperator.PmapColors, transform=lambda x: tuple(x.flat)), SerialBlockSlot( topLevelOperator.LabelImages, topLevelOperator.LabelInputs, topLevelOperator.NonzeroLabelBlocks, name="LabelSets", subname="labels{:03d}", selfdepends=False, shrink_to_bb=True, ), BinarySlot(topLevelOperator.ModelBinary), ] super().__init__(projectFileGroupName, slots)
def __init__(self, topGroupName, operator): serialSlots = [ SerialDictSlot(operator.SelectedFeatures, transform=str), SerialListSlot(operator.LabelNames, transform=str), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialDictSlot(operator.LabelInputs, transform=int), SerialClassifierSlot(operator.Classifier, operator.classifier_cache, name="ClassifierForests"), SerialDictSlot(operator.CachedProbabilities, operator.InputProbabilities, transform=int), #SerialDictSlotWithoutDeserialization(operator.Probabilities, operator, transform=str) SerialPickledValueSlot(operator.ExportSettings) ] super(ObjectClassificationSerializer, self).__init__(topGroupName, slots=serialSlots, operator=operator)
def __init__(self, topGroupName, operator): self.VERSION = 1 # Make sure to bump the version in case you make any changes in the serialization serialSlots = [ SerialDictSlot(operator.SelectedFeatures), SerialListSlot(operator.LabelNames), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialDictSlot(operator.LabelInputs, transform=int), SerialClassifierSlot(operator.Classifier, operator.classifier_cache, name="ClassifierForests"), SerialDictSlot(operator.CachedProbabilities, operator.InputProbabilities, transform=int), SerialSlot(operator.MaxNumObj), SerialPickleableSlot(operator.ExportSettings, self.VERSION, None) ] super(ObjectClassificationSerializer, self).__init__(topGroupName, slots=serialSlots, operator=operator)
def __init__(self, operator, projectFileGroupName): self.predictionSlot = SerialPredictionSlot( operator.PredictionProbabilities, operator, name='Predictions', subname='predictions{:04d}', ) slots = [ SerialListSlot(operator.LabelNames, transform=str), SerialListSlot(operator.LabelColors, transform=lambda x: tuple(x.flat)), SerialListSlot(operator.PmapColors, transform=lambda x: tuple(x.flat)), SerialBlockSlot(operator.LabelImages, operator.LabelInputs, operator.NonzeroLabelBlocks, name='LabelSets', subname='labels{:0}', selfdepends=False), SerialCountingSlot(operator.Classifier, operator.classifier_cache, name="CountingWrappers", subname="wrapper{:04d}"), self.predictionSlot, SerialBoxSlot(operator.opTrain.BoxConstraintRois, operator.opTrain, name="Rois", subname="rois{:04d}"), SerialBoxSlot(operator.opTrain.BoxConstraintValues, operator.opTrain, name="Values", subname="values{:04d}") ] super(CountingSerializer, self).__init__(projectFileGroupName, slots=slots) self.predictionSlot.progressSignal.connect(self.progressSignal.emit)
def __init__(self, operator, projectFileGroupName): slots = [ SerialListSlot(operator.ChannelSelections), SerialSlot(operator.Threshold), SerialSlot(operator.MinSize), SerialSlot(operator.Sigma), SerialSlot(operator.Alpha), SerialSlot(operator.PixelPitch), SerialBlockSlot( operator.Superpixels, operator.SuperpixelCacheInput, operator.CleanBlocks, name="Superpixels", subname="superpixels{:03d}", selfdepends=False, shrink_to_bb=False, compression_level=1, ), ] super(WsdtSerializer, self).__init__(projectFileGroupName, slots=slots, operator=operator)
def __init__(self, operator, projectFileGroupName): slots = [ SerialListSlot(operator.ChannelSelections), SerialSlot(operator.Pmin), SerialSlot(operator.MinMembraneSize), SerialSlot(operator.MinSegmentSize), SerialSlot(operator.SigmaMinima), SerialSlot(operator.SigmaWeights), SerialSlot(operator.GroupSeeds), SerialSlot(operator.PreserveMembranePmaps), SerialBlockSlot(operator.Superpixels, operator.SuperpixelCacheInput, operator.CleanBlocks, name='Superpixels', subname='superpixels{:03d}', selfdepends=False, shrink_to_bb=False, compression_level=1) ] super(WsdtSerializer, self).__init__(projectFileGroupName, slots=slots, operator=operator)
def __init__(self, operator, projectFileGroupName): super(NanshePostprocessingSerializer, self).__init__(projectFileGroupName, slots=[SerialSlot(operator.SignificanceThreshold, selfdepends=True), SerialListSlot(operator.WaveletTransformScale, selfdepends=True), SerialSlot(operator.NoiseThreshold, selfdepends=True), SerialSlot(operator.AcceptedRegionShapeConstraints_MajorAxisLength_Min, selfdepends=True), SerialSlot(operator.AcceptedRegionShapeConstraints_MajorAxisLength_Min_Enabled, selfdepends=True), SerialSlot(operator.AcceptedRegionShapeConstraints_MajorAxisLength_Max, selfdepends=True), SerialSlot(operator.AcceptedRegionShapeConstraints_MajorAxisLength_Max_Enabled, selfdepends=True), SerialSlot(operator.MinLocalMaxDistance, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Area_Min, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Area_Min_Enabled, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Area_Max, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Area_Max_Enabled, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Eccentricity_Min, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Eccentricity_Min_Enabled, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Eccentricity_Max, selfdepends=True), SerialSlot(operator.AcceptedNeuronShapeConstraints_Eccentricity_Max_Enabled, selfdepends=True), SerialSlot(operator.AlignmentMinThreshold, selfdepends=True), SerialSlot(operator.OverlapMinThreshold, selfdepends=True), SerialSlot(operator.Fuse_FractionMeanNeuronMaxThreshold, selfdepends=True), SerialBlockSlot(operator.Output, operator.CacheInput, operator.CleanBlocks, selfdepends=True)])